This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D.

Overview

Pytorch Medical Segmentation

Read Chinese Introduction:Here!

Recent Updates

  • 2021.1.8 The train and test codes are released.
  • 2021.2.6 A bug in dice was fixed with the help of Shanshan Li.

Requirements

  • pytorch1.7
  • torchio<=0.18.20
  • python>=3.6

Notice

Prepare Your Dataset

Example1

if your source dataset is :

source_dataset
├── source_1.mhd
├── source_1.zraw
├── source_2.mhd
├── source_2.zraw
├── source_3.mhd
├── source_3.zraw
├── source_4.mhd
├── source_4.zraw
└── ...

and your label dataset is :

label_dataset
├── label_1.mhd
├── label_1.zraw
├── label_2.mhd
├── label_2.zraw
├── label_3.mhd
├── label_3.zraw
├── label_4.mhd
├── label_4.zraw
└── ...

then your should modify fold_arch as *.mhd, source_train_dir as source_dataset and label_train_dir as label_dataset in hparam.py

Example2

if your source dataset is :

source_dataset
├── 1
    ├── source_1.mhd
    ├── source_1.zraw
├── 2
    ├── source_2.mhd
    ├── source_2.zraw
├── 3
    ├── source_3.mhd
    ├── source_3.zraw
├── 4
    ├── source_4.mhd
    ├── source_4.zraw
└── ...

and your label dataset is :

label_dataset
├── 1
    ├── label_1.mhd
    ├── label_1.zraw
├── 2
    ├── label_2.mhd
    ├── label_2.zraw
├── 3
    ├── label_3.mhd
    ├── label_3.zraw
├── 4
    ├── label_4.mhd
    ├── label_4.zraw
└── ...

then your should modify fold_arch as */*.mhd, source_train_dir as source_dataset and label_train_dir as label_dataset in hparam.py

Training

  • without pretrained-model
set hparam.train_or_test to 'train'
python main.py
  • with pretrained-model
set hparam.train_or_test to 'train'
python main.py -k True

Inference

  • testing
set hparam.train_or_test to 'test'
python main.py

Examples

Done

  • 2D
  • 3D

TODO

  • metrics.py to evaluate your results
  • dataset
  • benchmark
  • nnunet

By The Way

This project is not perfect and there are still many problems. If you are using this project and would like to give the author some feedbacks, you can send Kangneng Zhou an email, his wechat number is: ellisgege666

Acknowledgements

This repository is an unoffical PyTorch implementation of Medical segmentation in 3D and 2D and highly based on MedicalZooPytorch and torchio.Thank you for the above repo. Thank you to Cheng Chen, Daiheng Gao, Jie Zhang, Xing Tao, Weili Jiang and Shanshan Li for all the help I received.

Owner
EasyCV-Ellis
公众号【easycv_ellis】博主,欢迎关注! @Easy-Shu 的兄弟公众号!
EasyCV-Ellis
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
I will implement Fastai in each projects present in this repository.

DEEP LEARNING FOR CODERS WITH FASTAI AND PYTORCH The repository contains a list of the projects which I have worked on while reading the book Deep Lea

Thinam Tamang 43 Dec 20, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting

Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting This is the origin Pytorch implementation of Informer in the followin

Haoyi 3.1k Dec 29, 2022
Roger Labbe 13k Dec 29, 2022
Neural HMMs are all you need (for high-quality attention-free TTS)

Neural HMMs are all you need (for high-quality attention-free TTS) Shivam Mehta, Éva Székely, Jonas Beskow, and Gustav Eje Henter This is the official

Shivam Mehta 0 Oct 28, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
Point Cloud Registration using Representative Overlapping Points.

Point Cloud Registration using Representative Overlapping Points (ROPNet) Abstract 3D point cloud registration is a fundamental task in robotics and c

ZhuLifa 36 Dec 16, 2022
The official re-implementation of the Neurips 2021 paper, "Targeted Neural Dynamical Modeling".

Targeted Neural Dynamical Modeling Note: This is a re-implementation (in Tensorflow2) of the original TNDM model. We do not plan to further update the

6 Oct 05, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
CLNTM - Contrastive Learning for Neural Topic Model

Contrastive Learning for Neural Topic Model This repository contains the impleme

Thong Thanh Nguyen 25 Nov 24, 2022
This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

HCSC: Hierarchical Contrastive Selective Coding This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive

YUANFAN GUO 111 Dec 20, 2022
Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes The codes for simu

1 Jan 12, 2022
Super-BPD: Super Boundary-to-Pixel Direction for Fast Image Segmentation (CVPR 2020)

Super-BPD for Fast Image Segmentation (CVPR 2020) Introduction We propose direction-based super-BPD, an alternative to superpixel, for fast generic im

189 Dec 07, 2022
Intel® Neural Compressor is an open-source Python library running on Intel CPUs and GPUs

Intel® Neural Compressor targeting to provide unified APIs for network compression technologies, such as low precision quantization, sparsity, pruning, knowledge distillation, across different deep l

Intel Corporation 846 Jan 04, 2023
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022
Code for EMNLP 2021 main conference paper "Text AutoAugment: Learning Compositional Augmentation Policy for Text Classification"

Text-AutoAugment (TAA) This repository contains the code for our paper Text AutoAugment: Learning Compositional Augmentation Policy for Text Classific

LancoPKU 105 Jan 03, 2023
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023