Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Overview

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

The codes for simulations were written in Fortran and compiled with the Intel Fortran Compiler. Data analysis and figures were done Python 3.10 and the following open source libraries: pandas, matplotlib and seaborn.

In this repository we show codes for simulations and processing data, as well as datasets used.

The preprint is available at https://arxiv.org/abs/2201.03476. The following BibTeX code can be used to cite it:

@misc{costa2022compartmental,
      title={Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil}, 
      author={Guilherme S. Costa and Wesley Cota and Silvio C. Ferreira},
      year={2022},
      eprint={2201.03476},
      archivePrefix={arXiv},
      primaryClass={q-bio.PE}
}

See also Effects of infection fatality ratio and social contact matrices on vaccine prioritization strategies and Outbreak diversity in epidemic waves propagating through distinct geographical scales.

Dictionaries

Municipalities :The files (a) dictES.csv and (b) dictPR.csv yield some information about municipalities of (a) ES (B) PR states. These files have six columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. ibgeID: official code to identify the city
  3. name: name of the city
  4. intermID: official code of intermediate region to which the city belongs
  5. imedID: official code of immediate region to which the city belongs
  6. totPop2019: population of the city estimated in 2019

Immediate and intermediate regions The files (a) dictImed.csv and (b) dictInterm.csv yield some information about (a) Immediate and (b) Intermediate regions of PR and ES. These files have five columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. imedID or \verb|intermID|: official code to identify the region
  3. name: name of the region
  4. state: state to which the region belongs
  5. totPop2019: population of the region estimated in 2019

States The file dictUF.csv yield some information about PR and ES states. These files have five columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. ibgeID: official code to identify the state
  3. name: name of the state
  4. uf: abbreviation of the state's name
  5. totPop2019: population of the state estimated in 2019

Time series

Cases and deaths: The files (a) PR.csv, (b) ES.csv, (c) saopaulo.csv and (d) manaus.csv yield the time series of confirmed cases and deaths since April 1, 2020 for (a) All cities of PR state, (b) All cities of ES state, (c) São Paulo city and (d) Manaus city. These files have seven columns:

  1. date: date
  2. ibgeID: official code to identify the city
  3. newCases: new confirmed cases on that day
  4. newDeaths: new confirmed deaths on that day
  5. city: name of the city
  6. totalCases: accumulated cases
  7. totalDeaths: accumulated deaths

Calibration: Within files (a) imed.zip and (b) state.zip we have the time series of accumulated cases and fatality ratio, aggregated for different geographical levels. In this, we have two types of files: casesXX.dat (XX refers to the calibrating IDs mentioned before) are accumulated cases while lethXX.dat are the daily fatalities).

Calibration Code

The file calibra.f90 is a program written in Fortran that executes the calibration algorithm described on Methods section of the main paper $1000$ times with different epidemiological parameters. This program has four inputs: the time series of accumulated cases and fatality, the initial date for calibration and the population of the region (state, city, etc). Besides that, this program has two output files: epiQuantities.dat and hiddenCompart.dat. The first has seven columns:

  1. Days from the initial time
  2. Calibrated confirmed cases
  3. Reference cases
  4. Effective reproductive number
  5. Fraction of susceptible population
  6. Underreporting coefficient
  7. Sample

On hiddenCompart.dat, we have time series for some compartments in the model: from left to right S, E, A, I, CA + CI, R + RI + RA + D and sample number.

Python scripts and figures

Calculation of underreporting coefficient: the file underreporting.ipynb is a I-python script that calculates the underreporting coefficient starting from a time series of confirmed cases and deaths. At the end, it exhibits a graphic showing the evolution of this coefficient.

Template for figures The majority of figures in this work were generated with matplotlib and seaborn packages of Python 3.7. File format_covid19br.mplstyle contains the template (font family and sizes) for generating those figures and graphics.

Annotated notes and summaries of the TensorFlow white paper, along with SVG figures and links to documentation

TensorFlow White Paper Notes Features Notes broken down section by section, as well as subsection by subsection Relevant links to documentation, resou

Sam Abrahams 437 Oct 09, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
VQGAN+CLIP Colab Notebook with user-friendly interface.

VQGAN+CLIP and other image generation system VQGAN+CLIP Colab Notebook with user-friendly interface. Latest Notebook: Mse regulized zquantize Notebook

Justin John 227 Jan 05, 2023
Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20. model in ONNX

ONNX msg_chn_wacv20 depth completion Python script for performing depth completion from sparse depth and rgb images using the msg_chn_wacv20 model in

Ibai Gorordo 19 Oct 22, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
Establishing Strong Baselines for TripClick Health Retrieval; ECIR 2022

TripClick Baselines with Improved Training Data Welcome 🙌 to the hub-repo of our paper: Establishing Strong Baselines for TripClick Health Retrieval

Sebastian Hofstätter 3 Nov 03, 2022
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Python scripts to detect faces in Python with the BlazeFace Tensorflow Lite models

Python scripts to detect faces using Python with the BlazeFace Tensorflow Lite models. Tested on Windows 10, Tensorflow 2.4.0 (Python 3.8).

Ibai Gorordo 46 Nov 17, 2022
SpanNER: Named EntityRe-/Recognition as Span Prediction

SpanNER: Named EntityRe-/Recognition as Span Prediction Overview | Demo | Installation | Preprocessing | Prepare Models | Running | System Combination

NeuLab 104 Dec 17, 2022
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
Tracking Progress in Question Answering over Knowledge Graphs

Tracking Progress in Question Answering over Knowledge Graphs Table of contents Question Answering Systems with Descriptions The QA Systems Table cont

Knowledge Graph Question Answering 47 Jan 02, 2023
pcnaDeep integrates cutting-edge detection techniques with tracking and cell cycle resolving models.

pcnaDeep: a deep-learning based single-cell cycle profiler with PCNA signal Welcome! pcnaDeep integrates cutting-edge detection techniques with tracki

ChanLab 8 Oct 18, 2022
PSPNet in Chainer

PSPNet This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer. Training Requirement Python 3.4.4+ Chainer 3.0.0b1+

Shunta Saito 76 Dec 12, 2022
VGG16 model-based classification project about brain tumor detection.

Brain-Tumor-Classification-with-MRI VGG16 model-based classification project about brain tumor detection. First, you can check what people are doing o

Atakan Erdoğan 2 Mar 21, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
In this work, we will implement some basic but important algorithm of machine learning step by step.

WoRkS continued English 中文 Français Probability Density Estimation-Non-Parametric Methods(概率密度估计-非参数方法) 1. Kernel / k-Nearest Neighborhood Density Est

liziyu0104 1 Dec 30, 2021
modelvshuman is a Python library to benchmark the gap between human and machine vision

modelvshuman is a Python library to benchmark the gap between human and machine vision. Using this library, both PyTorch and TensorFlow models can be evaluated on 17 out-of-distribution datasets with

Bethge Lab 244 Jan 03, 2023
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022