Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

Overview

Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil - Datasets and Codes

The codes for simulations were written in Fortran and compiled with the Intel Fortran Compiler. Data analysis and figures were done Python 3.10 and the following open source libraries: pandas, matplotlib and seaborn.

In this repository we show codes for simulations and processing data, as well as datasets used.

The preprint is available at https://arxiv.org/abs/2201.03476. The following BibTeX code can be used to cite it:

@misc{costa2022compartmental,
      title={Compartmental epidemic model to assess undocumented infections: applications to SARS-CoV-2 epidemics in Brazil}, 
      author={Guilherme S. Costa and Wesley Cota and Silvio C. Ferreira},
      year={2022},
      eprint={2201.03476},
      archivePrefix={arXiv},
      primaryClass={q-bio.PE}
}

See also Effects of infection fatality ratio and social contact matrices on vaccine prioritization strategies and Outbreak diversity in epidemic waves propagating through distinct geographical scales.

Dictionaries

Municipalities :The files (a) dictES.csv and (b) dictPR.csv yield some information about municipalities of (a) ES (B) PR states. These files have six columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. ibgeID: official code to identify the city
  3. name: name of the city
  4. intermID: official code of intermediate region to which the city belongs
  5. imedID: official code of immediate region to which the city belongs
  6. totPop2019: population of the city estimated in 2019

Immediate and intermediate regions The files (a) dictImed.csv and (b) dictInterm.csv yield some information about (a) Immediate and (b) Intermediate regions of PR and ES. These files have five columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. imedID or \verb|intermID|: official code to identify the region
  3. name: name of the region
  4. state: state to which the region belongs
  5. totPop2019: population of the region estimated in 2019

States The file dictUF.csv yield some information about PR and ES states. These files have five columns:

  1. ID: numeric key regarding calibration of confirmed cases time series
  2. ibgeID: official code to identify the state
  3. name: name of the state
  4. uf: abbreviation of the state's name
  5. totPop2019: population of the state estimated in 2019

Time series

Cases and deaths: The files (a) PR.csv, (b) ES.csv, (c) saopaulo.csv and (d) manaus.csv yield the time series of confirmed cases and deaths since April 1, 2020 for (a) All cities of PR state, (b) All cities of ES state, (c) São Paulo city and (d) Manaus city. These files have seven columns:

  1. date: date
  2. ibgeID: official code to identify the city
  3. newCases: new confirmed cases on that day
  4. newDeaths: new confirmed deaths on that day
  5. city: name of the city
  6. totalCases: accumulated cases
  7. totalDeaths: accumulated deaths

Calibration: Within files (a) imed.zip and (b) state.zip we have the time series of accumulated cases and fatality ratio, aggregated for different geographical levels. In this, we have two types of files: casesXX.dat (XX refers to the calibrating IDs mentioned before) are accumulated cases while lethXX.dat are the daily fatalities).

Calibration Code

The file calibra.f90 is a program written in Fortran that executes the calibration algorithm described on Methods section of the main paper $1000$ times with different epidemiological parameters. This program has four inputs: the time series of accumulated cases and fatality, the initial date for calibration and the population of the region (state, city, etc). Besides that, this program has two output files: epiQuantities.dat and hiddenCompart.dat. The first has seven columns:

  1. Days from the initial time
  2. Calibrated confirmed cases
  3. Reference cases
  4. Effective reproductive number
  5. Fraction of susceptible population
  6. Underreporting coefficient
  7. Sample

On hiddenCompart.dat, we have time series for some compartments in the model: from left to right S, E, A, I, CA + CI, R + RI + RA + D and sample number.

Python scripts and figures

Calculation of underreporting coefficient: the file underreporting.ipynb is a I-python script that calculates the underreporting coefficient starting from a time series of confirmed cases and deaths. At the end, it exhibits a graphic showing the evolution of this coefficient.

Template for figures The majority of figures in this work were generated with matplotlib and seaborn packages of Python 3.7. File format_covid19br.mplstyle contains the template (font family and sizes) for generating those figures and graphics.

Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
Pytorch implementation of our paper under review -- 1xN Pattern for Pruning Convolutional Neural Networks

1xN Pattern for Pruning Convolutional Neural Networks (paper) . This is Pytorch re-implementation of "1xN Pattern for Pruning Convolutional Neural Net

Mingbao Lin (林明宝) 29 Nov 29, 2022
PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation

PyTorch implementation of Interpretable Explanations of Black Boxes by Meaningful Perturbation The paper: https://arxiv.org/abs/1704.03296 What makes

Jacob Gildenblat 322 Dec 17, 2022
[Link]mareteutral - pars tradg wth M []

pairs-trading-with-ML Jonathan Larkin, August 2017 One popular strategy classification is Pairs Trading. Though this category of strategies can exhibi

Jonathan Larkin 134 Jan 06, 2023
A curated list of the top 10 computer vision papers in 2021 with video demos, articles, code and paper reference.

The Top 10 Computer Vision Papers of 2021 The top 10 computer vision papers in 2021 with video demos, articles, code, and paper reference. While the w

Louis-François Bouchard 118 Dec 21, 2022
Springer Link Download Module for Python

♞ pupalink A simple Python module to search and download books from SpringerLink. 🧪 This project is still in an early stage of development. Expect br

Pupa Corp. 18 Nov 21, 2022
Official PyTorch implementation of "VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization" (CVPR 2021)

VITON-HD — Official PyTorch Implementation VITON-HD: High-Resolution Virtual Try-On via Misalignment-Aware Normalization Seunghwan Choi*1, Sunghyun Pa

Seunghwan Choi 250 Jan 06, 2023
A Multi-modal Model Chinese Spell Checker Released on ACL2021.

ReaLiSe ReaLiSe is a multi-modal Chinese spell checking model. This the office code for the paper Read, Listen, and See: Leveraging Multimodal Informa

DaDa 106 Dec 29, 2022
Tensor-based approaches for fMRI classification

tensor-fmri Using tensor-based approaches to classify fMRI data from StarPLUS. Citation If you use any code in this repository, please cite the follow

4 Sep 07, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP

CLIP-GEN [简体中文][English] 本项目在萤火二号集群上用 PyTorch 实现了论文 《CLIP-GEN: Language-Free Training of a Text-to-Image Generator with CLIP》。 CLIP-GEN 是一个 Language-F

75 Dec 29, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Totally Versatile Miscellanea for Pytorch

Totally Versatile Miscellania for PyTorch Thomas Viehmann [email protected] Thi

Thomas Viehmann 428 Dec 28, 2022
RRL: Resnet as representation for Reinforcement Learning

Resnet as representation for Reinforcement Learning (RRL) is a simple yet effective approach for training behaviors directly from visual inputs. We demonstrate that features learned by standard image

Meta Research 21 Dec 07, 2022
Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe

Traductor de señas Traductor de lengua de señas al español basado en Python con Opencv y MedaiPipe Requerimientos 🔧 Python 3.8 o inferior para evitar

Jahaziel Hernandez Hoyos 3 Nov 12, 2022
Discord Multi Tool that focuses on design and easy usage

Multi-Tool-v1.0 Discord Multi Tool that focuses on design and easy usage Delete webhook Block all friends Spam webhook Modify webhook Webhook info Tok

Lodi#0001 24 May 23, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
BookMyShowPC - Movie Ticket Reservation App made with Tkinter

Book My Show PC What is this? Movie Ticket Reservation App made with Tkinter. Tk

The Nithin Balaji 3 Dec 09, 2022