PSPNet in Chainer

Overview

PSPNet

This is an unofficial implementation of Pyramid Scene Parsing Network (PSPNet) in Chainer.

Training

Requirement

  • Python 3.4.4+
    • Chainer 3.0.0b1+
    • ChainerMN master
    • CuPy 2.0.0b1+
    • ChainerCV 0.6.0+
    • NumPy 1.12.0+
    • tqdm 4.11.0+
pip install chainer --pre
pip install cupy --pre
pip install git+git://github.com/chainer/chainermn
pip install git+git://github.com/chainer/chainercv
pip install tqdm

Inference using converted weights

Requirement

  • Python 3.4.4+
    • Chainer 3.0.0b1+
    • ChainerCV 0.6.0+
    • Matplotlib 2.0.0+
    • CuPy 2.0.0b1+
    • tqdm 4.11.0+

1. Run demo.py

Cityscapes

$ python demo.py -g 0 -m cityscapes -f aachen_000000_000019_leftImg8bit.png

Pascal VOC2012

$ python demo.py -g 0 -m voc2012 -f 2008_000005.jpg

ADE20K

$ python demo.py -g 0 -m ade20k -f ADE_val_00000001.jpg

FAQ

If you get RuntimeError: Invalid DISPLAY variable, how about specifying the matplotlib's backend by an environment variable?

$ MPLBACKEND=Agg python demo.py -g 0 -m cityscapes -f aachen_000000_000019_leftImg8bit.png

Convert weights by yourself

Caffe is NOT needed to convert .caffemodel to Chainer model. Use caffe_pb2.py.

Requirement

  • Python 3.4.4+
    • protobuf 3.2.0+
    • Chainer 3.0.0b1+
    • NumPy 1.12.0+

1. Download the original weights

Please download the weights below from the author's repository:

and then put them into weights directory.

2. Convert weights

$ python convert.py

Reference

  • The original implementation by authors is: hszhao/PSPNet
  • The original paper is:
    • Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, "Pyramid Scene Parsing Network", Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017
You might also like...
Comments
  • Training failes with ModuleNotFoundError when using train_mn.py

    Training failes with ModuleNotFoundError when using train_mn.py

    Hi, I got following error when I tried to train PSP net with your train_mn.py How can I train my PSPNet model?

    [email protected]:/yendo/oss/chainer-pspnet# python3 train_mn.py --result_dir result configs/cityscapes/pspnet.yml
    Warning: using naive communicator because only naive supports CPU-only execution
    ==========================================
    Num process (COMM_WORLD): 1
    Using single_node communicator
    Chainer version: 3.4.0
    ChainerMN version: 1.2.0
    cuda: True, cudnn: True
    result_dir: result
    Traceback (most recent call last):
      File "train_mn.py", line 504, in <module>
        trainer = get_trainer(args)
      File "train_mn.py", line 374, in get_trainer
        model = get_model_from_config(config, comm)
      File "train_mn.py", line 239, in get_model_from_config
        loss.module, loss.name, loss.args, comm)
      File "train_mn.py", line 219, in get_model
        mod = import_module(loss_module)
      File "/root/.pyenv/versions/anaconda3-5.0.1/lib/python3.6/importlib/__init__.py", line 126, in import_module
        return _bootstrap._gcd_import(name[level:], package, level)
      File "<frozen importlib._bootstrap>", line 994, in _gcd_import
      File "<frozen importlib._bootstrap>", line 971, in _find_and_load
      File "<frozen importlib._bootstrap>", line 941, in _find_and_load_unlocked
      File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
      File "<frozen importlib._bootstrap>", line 994, in _gcd_import
      File "<frozen importlib._bootstrap>", line 971, in _find_and_load
      File "<frozen importlib._bootstrap>", line 953, in _find_and_load_unlocked
    ModuleNotFoundError: No module named 'loss'
    
    opened by jo7ueb 0
  • Training Fails with IndexError when using train.py

    Training Fails with IndexError when using train.py

    Hi, I got following error when I tried to train PSP net with your train.py How can I train my PSPNet model?

    [email protected]:/yendo/oss/chainer-pspnet# python3 train.py --gpu --result_dir result configs/cityscapes/pspnet.yml
    ==========================================
    Chainer version: 3.4.0
    CuPy version: 2.4.0
    Traceback (most recent call last):
      File "train.py", line 483, in <module>
        trainer = get_trainer(args)
      File "train.py", line 339, in get_trainer
        chainer.cuda.available, chainer.cuda.cudnn_enabled, ))
    IndexError: tuple index out of range
    
    opened by jo7ueb 0
  • could you actually train a new model?

    could you actually train a new model?

    Hi, I am currently trying to train the cityscapes dataset with your code, but the result is miserable: still 0.5263158 (=1/19) class accuracy after 120 epochs. Apparently, the loss of training data is converged correctly, so it seems like a perfect over fitting. Since I used the same settings as yours, i am wondering how you managed to reproduce the results(maybe i need less learning rate?). thanks in advance!

    opened by suzukikbp 0
Owner
Shunta Saito
Ph.D in Engineering, Researcher at Preferred Networks, Inc.
Shunta Saito
Phy-Q: A Benchmark for Physical Reasoning

Phy-Q: A Benchmark for Physical Reasoning Cheng Xue*, Vimukthini Pinto*, Chathura Gamage* Ekaterina Nikonova, Peng Zhang, Jochen Renz School of Comput

29 Dec 19, 2022
PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short-Term Transformer for Online Action Detection".

Long Short-Term Transformer for Online Action Detection Introduction This is a PyTorch implementation for our NeurIPS 2021 Spotlight paper "Long Short

77 Dec 16, 2022
Code to reproduce the results in "Visually Grounded Reasoning across Languages and Cultures", EMNLP 2021.

marvl-code [WIP] This is the implementation of the approaches described in the paper: Fangyu Liu*, Emanuele Bugliarello*, Edoardo M. Ponti, Siva Reddy

25 Nov 15, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
Official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning (ICML 2021) published at International Conference on Machine Learning

About This repository the official PyTorch implementation of Learning Intra-Batch Connections for Deep Metric Learning. The config files contain the s

Dynamic Vision and Learning Group 41 Dec 10, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
Annealed Flow Transport Monte Carlo

Annealed Flow Transport Monte Carlo Open source implementation accompanying ICML 2021 paper by Michael Arbel*, Alexander G. D. G. Matthews* and Arnaud

DeepMind 30 Nov 21, 2022
Classic Papers for Beginners and Impact Scope for Authors.

There have been billions of academic papers around the world. However, maybe only 0.0...01% among them are valuable or are worth reading. Since our limited life has never been forever, TopPaper provi

Qiulin Zhang 228 Dec 18, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
Adversarial Graph Representation Adaptation for Cross-Domain Facial Expression Recognition (AGRA, ACM 2020, Oral)

Cross Domain Facial Expression Recognition Benchmark Implementation of papers: Cross-Domain Facial Expression Recognition: A Unified Evaluation Benchm

89 Dec 09, 2022
Codebase for Diffusion Models Beat GANS on Image Synthesis.

Codebase for Diffusion Models Beat GANS on Image Synthesis.

Katherine Crowson 128 Dec 02, 2022
Implementation of STAM (Space Time Attention Model), a pure and simple attention model that reaches SOTA for video classification

STAM - Pytorch Implementation of STAM (Space Time Attention Model), yet another pure and simple SOTA attention model that bests all previous models in

Phil Wang 109 Dec 28, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021
Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Convert Pytorch model to onnx or tflite, and the converted model can be visualized by Netron

Roxbili 5 Nov 19, 2022
Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019)

Dynamic Multi-scale Filters for Semantic Segmentation (DMNet ICCV'2019) Introduction Official implementation of Dynamic Multi-scale Filters for Semant

23 Oct 21, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
A simple library that implements CLIP guided loss in PyTorch.

pytorch_clip_guided_loss: Pytorch implementation of the CLIP guided loss for Text-To-Image, Image-To-Image, or Image-To-Text generation. A simple libr

Sergei Belousov 74 Dec 26, 2022
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022