Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Overview

Clothes Parsing

Overview

This code provides an implementation of the research paper:

  A High Performance CRF Model for Clothes Parsing
  Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, and Raquel Urtasun
  Asian Conference on Computer Vision (ACCV), 2014

The code here allows training and testing of a model that got state-of-the-art results on the Fashionista dataset at the time of publication.

License

  Copyright (C) <2014> <Edgar Simo-Serra, Sanja Fidler, Francesc Moreno-Noguer, Raquel Urtasun>

  This work is licensed under the Creative Commons
  Attribution-NonCommercial-ShareAlike 4.0 International License. To view a copy
  of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or
  send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

  Edgar Simo-Serra, Institut de Robotica i Informatica Industrial (CSIC/UPC), December 2014.
  [email protected], http://www-iri.upc.es/people/esimo/

Installation

In order to get started first checkout out the source code and then extract the features:

# Check out the git and cd into it as working directory
git clone https://github.com/bobbens/clothes_parsing.git
cd clothes_parsing
# Get and unpack the necessary features
wget http://hi.cs.waseda.ac.jp/~esimo//data/poseseg.tar.bz2
tar xvjf poseseg.tar.bz2 

The dSP dependency must also be compiled. This can be done by:

cd lib/dSP_5.1
make # First edit the Makefile if necessary

Usage

You can reproduce results simply by running from Matlab:

sm = segmodel( 'PROFILE', '0.16', 'use_real_pose', false ); % Load the model, parameters can be set here
sm = sm.train_misc_unaries(); % Trains some misc stuff
sm = sm.train_MRF(); % Actually sets up and trains the CRF
R = sm.test_MRF_segmentation() % Performs testing and outputs results

This should generate an output like:

 BUILDING MRF OUTPUT 29 CLASSES (REAL POSE=0)...
 UNARIES:
    bgbias
    logreg:       29
    cpmc_logreg:  29
    cpmc
    shapelets
 HIGHER ORDER
    similarity
    limbs
 Initializing Image 011 / 350...   0.4 seconds!   

 ...

 Tested MRF in 319.0 seconds
 350 / 350... 

 R = 

     confusion: [29x29 double]
     order: [29x1 double]
     acc: 0.8432
     pre: [29x1 double]
     rec: [29x1 double]
     f1: [29x1 double]
     voc: [29x1 double]
     avr_pre: 0.3007
     avr_rec: 0.3292
     avr_f1: 0.3039
     avr_voc: 0.2013

Please note that due to stochastic components and differences between software versions, the numbers will not be exactly the same as the paper. For the paper all results were obtained on a linux machine running Ubuntu 12.04 with Matlab R2012a (7.14.0.739) 64-bit (glnxa64).

You can furthermore visualize the output of the model with:

sm.test_MRF_visualize( 'output/' )

This will save both the ground truth segmentations and the predicted segmentations in the directory 'output/' as shown in the paper.

If you use this code please cite:

 @InProceedings{SimoSerraACCV2014,
    author = {Edgar Simo-Serra and Sanja Fidler and Francesc Moreno-Noguer and Raquel Urtasun},
    title = {{A High Performance CRF Model for Clothes Parsing}},
    booktitle = "Proceedings of the Asian Conference on Computer Vision (2014)",
    year = 2014
 }

Acknowledgments

We would like to give our thanks to Kota Yamaguchi for his excellent code which we have used as a base for our model.

The different codes we have used (in alphabetical order):

Changelog

December 2014: Initial version 1.0 release

Official PyTorch implementation of MX-Font (Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Experts)

Introduction Pytorch implementation of Multiple Heads are Better than One: Few-shot Font Generation with Multiple Localized Expert. | paper Song Park1

Clova AI Research 97 Dec 23, 2022
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
automatic color-grading

color-matcher Description color-matcher enables color transfer across images which comes in handy for automatic color-grading of photographs, painting

hahnec 168 Jan 05, 2023
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region (Paper and DataSet). [New] Note that all the emails about the download permission o

Healthcare Intelligence Laboratory 71 Dec 22, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
Builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques

This project builds a LoRa radio frequency fingerprint identification (RFFI) system based on deep learning techiniques.

20 Dec 30, 2022
MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts This repo provides the PyTorch source code of our paper: Me

88 Jan 04, 2023
Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, numpy and joblib packages.

Pricefy Car Price Predictor App used to predict the price of the car based on certain input parameters created using python's scikit-learn, fastapi, n

Siva Prakash 1 May 10, 2022
Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020)

Causality In Traffic Accident (Under Construction) Repository for Traffic Accident Benchmark for Causality Recognition (ECCV 2020) Overview Data Prepa

Tackgeun 21 Nov 20, 2022
Official code repository for Continual Learning In Environments With Polynomial Mixing Times

Official code for Continual Learning In Environments With Polynomial Mixing Times Continual Learning in Environments with Polynomial Mixing Times This

Sharath Raparthy 1 Dec 19, 2021
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
VOGUE: Try-On by StyleGAN Interpolation Optimization

VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples.

Wei ZHANG 66 Dec 09, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
SparseML is a libraries for applying sparsification recipes to neural networks with a few lines of code, enabling faster and smaller models

SparseML is a toolkit that includes APIs, CLIs, scripts and libraries that apply state-of-the-art sparsification algorithms such as pruning and quantization to any neural network. General, recipe-dri

Neural Magic 1.5k Dec 30, 2022
A simple software for capturing human body movements using the Kinect camera.

KinectMotionCapture A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones po

Aleksander Palkowski 5 Aug 13, 2022