VOGUE: Try-On by StyleGAN Interpolation Optimization

Overview

VOGUE: Try-On by StyleGAN Interpolation Optimization

 	Kathleen M Lewis1,2		Srivatsan Varadharajan1		Ira Kemelmacher-Shlizerman1,3
  		1Google Research	    2MIT CSAIL	       3University of Washington

Figure 1: VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples. Bottom: pants try-on synthesized by our method. Note how our method preserves the identity of the person while allowing high detail garment try on.

Abstract

Given an image of a target person and an image of another person wearing a garment, we automatically generate the target person in the given garment. At the core of our method is a pose-conditioned StyleGAN2 latent space interpolation, which seamlessly combines the areas of interest from each image, i.e., body shape, hair, and skin color are derived from the target person, while the garment with its folds, material properties, and shape comes from the garment image. By automatically optimizing for interpolation coefficients per layer in the latent space, we can perform a seamless, yet true to source, merging of the garment and target person. Our algorithm allows for garments to deform according to the given body shape, while preserving pattern and material details. Experiments demonstrate state-of-theart photo-realistic results at high resolution (512 x 512).

VOGUE Method

We train a pose-conditioned StyleGAN2 network that outputs RGB images and segmentations.

After training our modified StyleGAN2 network, we run an optimization method to learn interpolation coefficients for each style block. These interpolation coefficients are used to combine style codes of two different images and semantically transfer a region of interest from one image to another. This method can be used for generated StyleGAN2 images or on real images by first projecting the real images into the latent space.

Figure 2: The try-on optimization setup illustrated here takes two latent codes z+1 and z+2 (representing two input images) and a pose heatmap as input into a pose-conditioned StyleGAN2 generator (gray). The generator produces the try-on image and its corresponding segmentation by interpolating between the latent codes using the interpolation-coefficients q. By minimizing the loss function over the space of interpolation coefficients, we are able to transfer garment(s) g from a garment image Ig, to the person image Ip.

Generated Image Try-On

VOGUE can transfer garments between different poses and body shapes. It preserves garment details (shape, pattern, color, texture) and person identity (hair, skin color, pose).

Shirt Try-On

With VOGUE, the same person can try on shirts of different styles (above). The identity of the person is preserved. When transferring a shorter garment or a different neckline, VOGUE is able to synthesize skin that is realistic and consistent with identity (below).


Different people can also try on the same shirt (below). The characteristics of the shirt are preserved across different poses and people.

Pants Try-On

Projected Image Try-On

Virtual try-on between two real images is possible by first projecting the two images into the StyleGAN Z+ latent space. Improving projection is an active area of research.

Shirt Try-On

Comparison with SOTA

Wang, Bochao, et al. "Toward characteristic-preserving image-based virtual try-on network." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Men, Yifang, et al. "Controllable person image synthesis with attribute-decomposed gan." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

Acknowledgements

We thank Edo Collins, Hao Peng, Jiaming Liu, Daniel Bauman, and Blake Farmer for their support of this work.



Feel free to ask any questions, open a PR if you feel something can be done differently!

🌟 Star this repository 🌟

Created by Charmve & maiwei.ai Community | Deployed on Kaggle

Owner
Wei ZHANG
I'm a Post-Bachelor in B.E. & B.A. , founder of @MaiweiAI Lab and @DeepVTuber. My research interests lie at Computer Vision and Machine Learning.
Wei ZHANG
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Coresets via Bilevel Optimization This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" ht

Zalán Borsos 51 Dec 30, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Reinforcement learning models in ViZDoom environment

DoomNet DoomNet is a ViZDoom agent trained by reinforcement learning. The agent is a neural network that outputs a probability of actions given only p

Andrey Kolishchak 126 Dec 09, 2022
A Lighting Pytorch Framework for Recommendation System, Easy-to-use and Easy-to-extend.

Torch-RecHub A Lighting Pytorch Framework for Recommendation Models, Easy-to-use and Easy-to-extend. 安装 pip install torch-rechub 主要特性 scikit-learn风格易用

Mincai Lai 67 Jan 04, 2023
PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric This repository contains the implementation of MSBG hearing loss m

BUT <a href=[email protected]"> 9 Nov 08, 2022
Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

SGMNet Implementation PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai C

87 Dec 11, 2022
Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

47 Jun 30, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Hierarchical Metadata-Aware Document Categorization under Weak Supervision This project provides a weakly supervised framework for hierarchical metada

Yu Zhang 53 Sep 17, 2022
Merlion: A Machine Learning Framework for Time Series Intelligence

Merlion: A Machine Learning Library for Time Series Table of Contents Introduction Installation Documentation Getting Started Anomaly Detection Foreca

Salesforce 2.8k Dec 30, 2022
Light-weight network, depth estimation, knowledge distillation, real-time depth estimation, auxiliary data.

light-weight-depth-estimation Boosting Light-Weight Depth Estimation Via Knowledge Distillation, https://arxiv.org/abs/2105.06143 Junjie Hu, Chenyou F

Junjie Hu 13 Dec 10, 2022
Collision risk estimation using stochastic motion models

collision_risk_estimation Collision risk estimation using stochastic motion models. This is a new approach, based on stochastic models, to predict the

Unmesh 7 Jun 26, 2022
This repository will be a summary and outlook on all our open, medical, AI advancements.

medical by LAION This repository will be a summary and outlook on all our open, medical, AI advancements. See the medical-general channel in the medic

LAION AI 18 Dec 30, 2022
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Information Maximization for Multimodal Sentiment Analysis, accepted at EMNLP 2021.

MultiModal-InfoMax This repository contains the official implementation code of the paper Improving Multimodal Fusion with Hierarchical Mutual Informa

Deep Cognition and Language Research (DeCLaRe) Lab 89 Dec 26, 2022
Safe Local Motion Planning with Self-Supervised Freespace Forecasting, CVPR 2021

Safe Local Motion Planning with Self-Supervised Freespace Forecasting By Peiyun Hu, Aaron Huang, John Dolan, David Held, and Deva Ramanan Citing us Yo

Peiyun Hu 90 Dec 01, 2022
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021