VOGUE: Try-On by StyleGAN Interpolation Optimization

Overview

VOGUE: Try-On by StyleGAN Interpolation Optimization

 	Kathleen M Lewis1,2		Srivatsan Varadharajan1		Ira Kemelmacher-Shlizerman1,3
  		1Google Research	    2MIT CSAIL	       3University of Washington

Figure 1: VOGUE is a StyleGAN interpolation optimization algorithm for photo-realistic try-on. Top: shirt try-on automatically synthesized by our method in two different examples. Bottom: pants try-on synthesized by our method. Note how our method preserves the identity of the person while allowing high detail garment try on.

Abstract

Given an image of a target person and an image of another person wearing a garment, we automatically generate the target person in the given garment. At the core of our method is a pose-conditioned StyleGAN2 latent space interpolation, which seamlessly combines the areas of interest from each image, i.e., body shape, hair, and skin color are derived from the target person, while the garment with its folds, material properties, and shape comes from the garment image. By automatically optimizing for interpolation coefficients per layer in the latent space, we can perform a seamless, yet true to source, merging of the garment and target person. Our algorithm allows for garments to deform according to the given body shape, while preserving pattern and material details. Experiments demonstrate state-of-theart photo-realistic results at high resolution (512 x 512).

VOGUE Method

We train a pose-conditioned StyleGAN2 network that outputs RGB images and segmentations.

After training our modified StyleGAN2 network, we run an optimization method to learn interpolation coefficients for each style block. These interpolation coefficients are used to combine style codes of two different images and semantically transfer a region of interest from one image to another. This method can be used for generated StyleGAN2 images or on real images by first projecting the real images into the latent space.

Figure 2: The try-on optimization setup illustrated here takes two latent codes z+1 and z+2 (representing two input images) and a pose heatmap as input into a pose-conditioned StyleGAN2 generator (gray). The generator produces the try-on image and its corresponding segmentation by interpolating between the latent codes using the interpolation-coefficients q. By minimizing the loss function over the space of interpolation coefficients, we are able to transfer garment(s) g from a garment image Ig, to the person image Ip.

Generated Image Try-On

VOGUE can transfer garments between different poses and body shapes. It preserves garment details (shape, pattern, color, texture) and person identity (hair, skin color, pose).

Shirt Try-On

With VOGUE, the same person can try on shirts of different styles (above). The identity of the person is preserved. When transferring a shorter garment or a different neckline, VOGUE is able to synthesize skin that is realistic and consistent with identity (below).


Different people can also try on the same shirt (below). The characteristics of the shirt are preserved across different poses and people.

Pants Try-On

Projected Image Try-On

Virtual try-on between two real images is possible by first projecting the two images into the StyleGAN Z+ latent space. Improving projection is an active area of research.

Shirt Try-On

Comparison with SOTA

Wang, Bochao, et al. "Toward characteristic-preserving image-based virtual try-on network." Proceedings of the European Conference on Computer Vision (ECCV). 2018.

Men, Yifang, et al. "Controllable person image synthesis with attribute-decomposed gan." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

Acknowledgements

We thank Edo Collins, Hao Peng, Jiaming Liu, Daniel Bauman, and Blake Farmer for their support of this work.



Feel free to ask any questions, open a PR if you feel something can be done differently!

🌟 Star this repository 🌟

Created by Charmve & maiwei.ai Community | Deployed on Kaggle

Owner
Wei ZHANG
I'm a Post-Bachelor in B.E. & B.A. , founder of @MaiweiAI Lab and @DeepVTuber. My research interests lie at Computer Vision and Machine Learning.
Wei ZHANG
Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [CVPR 2021]

Deep Occlusion-Aware Instance Segmentation with Overlapping BiLayers [BCNet, CVPR 2021] This is the official pytorch implementation of BCNet built on

Lei Ke 434 Dec 01, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
[IROS2021] NYU-VPR: Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymization Influences

NYU-VPR This repository provides the experiment code for the paper Long-Term Visual Place Recognition Benchmark with View Direction and Data Anonymiza

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 22 Sep 28, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Graph Convolutional Networks in PyTorch

Graph Convolutional Networks in PyTorch PyTorch implementation of Graph Convolutional Networks (GCNs) for semi-supervised classification [1]. For a hi

Thomas Kipf 4.5k Dec 31, 2022
[NeurIPS 2021] SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning

SSUL - Official Pytorch Implementation (NeurIPS 2021) SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning Sun

Clova AI Research 44 Dec 27, 2022
This is an official source code for implementation on Extensive Deep Temporal Point Process

Extensive Deep Temporal Point Process This is an official source code for implementation on Extensive Deep Temporal Point Process, which is composed o

Haitao Lin 8 Aug 15, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
VR Viewport Pose Model for Quantifying and Exploiting Frame Correlations

This repository contains the introduction to the collected VRViewportPose dataset and the code for the IEEE INFOCOM 2022 paper: "VR Viewport Pose Model for Quantifying and Exploiting Frame Correlatio

0 Aug 10, 2022
This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation".

IR-GAIL This is an example implementation of the paper "Cross Domain Robot Imitation with Invariant Representation". Dependency The experiments are de

Zhao-Heng Yin 1 Jul 14, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
DecoupledNet is semantic segmentation system which using heterogeneous annotations

DecoupledNet: Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation Created by Seunghoon Hong, Hyeonwoo Noh and Bohyung Han at POSTE

Hyeonwoo Noh 74 Sep 22, 2021
Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)"

Official PyTorch implementation of the paper "Likelihood Training of Schrödinger Bridge using Forward-Backward SDEs Theory (SB-FBSDE)" which introduces a new class of deep generative models that gene

Guan-Horng Liu 43 Jan 03, 2023
TensorFlow-based implementation of "ICNet for Real-Time Semantic Segmentation on High-Resolution Images".

ICNet_tensorflow This repo provides a TensorFlow-based implementation of paper "ICNet for Real-Time Semantic Segmentation on High-Resolution Images,"

HsuanKung Yang 406 Nov 27, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting #Dataset The folder "Dataset" contains the dataset use in this work and m

0 Jan 08, 2022
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022