Hierarchical Metadata-Aware Document Categorization under Weak Supervision (WSDM'21)

Overview

Hierarchical Metadata-Aware Document Categorization under Weak Supervision

This project provides a weakly supervised framework for hierarchical metadata-aware document categorization.

Links

Installation

For training, a GPU is strongly recommended.

Keras

The code is based on Keras. You can find installation instructions here.

Dependency

The code is written in Python 3.6. The dependencies are summarized in the file requirements.txt. You can install them like this:

pip3 install -r requirements.txt

Quick Start

To reproduce the results in our paper, you need to first download the datasets. Three datasets are used in our paper: GitHub, ArXiv, and Amazon. Once you unzip the downloaded file (i.e., data.zip), you can see three folders related to these three datasets, respectively.

Dataset #Documents #Layers #Classes (including ROOT) #Leaves Sample Classes
GitHub 1,596 2 18 14 Computer Vision (Layer-1), Image Generation (Layer-2)
ArXiv 26,400 2 94 88 cs (Layer-1), cs.AI (Layer-2)
Amazon 147,000 2 166 147 Automotive (Layer-1), Car Care (Layer-2)

You need to put these 3 folders under the main folder ./. Then the following running script can be used to run the model.

./test.sh

Level-1/Level-2/Overall Micro-F1/Macro-F1 scores will be shown in the last several lines of the output. The classification result can be found under your dataset folder. For example, if you are using the GitHub dataset, the output will be ./github/out.txt.

Data

In each of the three folders (i.e., github/, arxiv/, and amazon/), there is a json file, where each line represents one document with text and metadata information.

For GitHub, the json format is

{
  "id": "Natsu6767/DCGAN-PyTorch",  
  "user": [
    "Natsu6767"
  ],
  "text": "pytorch implementation of dcgan trained on the celeba dataset deep convolutional gan ...",
  "tags": [
    "pytorch",
    "dcgan",
    "gan",
    "implementation",
    "deeplearning",
    "computer-vision",
    "generative-model"
  ],
  "labels": [
    "$Computer-Vision",
    "$Image-Generation"
  ]
}

The "user" and "tags" fields are metadata.

For ArXiv, the json format is

{
  "id": "1001.0063",
  "authors": [
    "Alessandro Epasto",
    "Enrico Nardelli"
  ],
  "text": "on a model for integrated information in this paper we give a thorough presentation ...",
  "labels": [
    "cs",
    "cs.AI"
  ]
}

The "authors" field is metadata.

For Amazon, the json format is

{
  "user": [
    "A39IXH6I0WT6TK"
  ],
  "product": [
    "B004DLPXAO"
  ],
  "text": "works really great only had a problem when it was updated but they fixed it right away ...",
  "labels": [
    "Apps-for-Android",
    "Books-&-Comics"
  ]
}

The "user" and "product" fields are metadata.

NOTE 1: If you would like to run our code on your own dataset, when you prepare this json file, make sure that: (1) You list the labels in the top-down order. For example, if the label path of your repository is ROOT-A-B-C, then the "labels" field should be ["A", "B", "C"]. (2) For each document, its metadata field is always represented by a list. For example, the "user" field should be ["A39IXH6I0WT6TK"] instead of "A39IXH6I0WT6TK".

Running on New Datasets

In the Quick Start section, we include a pretrained embedding file in the downloaded folders. If you would like to re-train the embedding (or you have a new dataset), please follow the steps below.

  1. Create a directory named ${dataset} under the main folder (e.g., ./github).

  2. Prepare four files:
    (1) ./${dataset}/label_hier.txt indicating the parent children relationships between classes. The first class of each line is the parent class, followed by all its children classes. Whitespace is used as the delimiter. The root class must be named as ROOT. Make sure your class names do not contain whitespace.
    (2) ./${dataset}/doc_id.txt containing labeled document ids for each class. Each line begins with the class name, and then document ids in the corpus (starting from 0) of the corresponding class separated by whitespace.
    (3) ./${dataset}/${json-name}.json. You can refer to the provided json format above. Make sure it has two fields "text" and "labels". You can add your own metadata fields in the json.
    (4) ./${dataset}/meta_dict.json indicating the names of your metadata fields. For example, for GitHub, it should be

{"metadata": ["user", "tags"]}

For ArXiv, it should be

{"metadata": ["authors"]}
  1. Install the dependencies GSL and Eigen. For Eigen, we already provide a zip file JointEmbedding/eigen-3.3.3.zip. You can directly unzip it in JointEmbedding/. For GSL, you can download it here.

  2. ./prep_emb.sh. Make sure you change the dataset/json names. The embedding file will be saved to ./${dataset}/embedding_sph.

After that, you can train the classifier as mentioned in Quick Start (i.e., ./test.sh). Please always refer to the example datasets when adapting the code for a new dataset.

Citation

If you find the implementation useful, please cite the following paper:

@inproceedings{zhang2021hierarchical,
  title={Hierarchical Metadata-Aware Document Categorization under Weak Supervision},
  author={Zhang, Yu and Chen, Xiusi and Meng, Yu and Han, Jiawei},
  booktitle={WSDM'21},
  pages={770--778},
  year={2021},
  organization={ACM}
}
Owner
Yu Zhang
CS Ph.D. student at UIUC; Data Mining
Yu Zhang
code for paper"A High-precision Semantic Segmentation Method Combining Adversarial Learning and Attention Mechanism"

PyTorch implementation of UAGAN(U-net Attention Generative Adversarial Networks) This repository contains the source code for the paper "A High-precis

Tong 8 Apr 25, 2022
Making a music video with Wav2CLIP and VQGAN-CLIP

music2video Overview A repo for making a music video with Wav2CLIP and VQGAN-CLIP. The base code was derived from VQGAN-CLIP The CLIP embedding for au

Joel Jang | 장요엘 163 Dec 26, 2022
SmallInitEmb - LayerNorm(SmallInit(Embedding)) in a Transformer to improve convergence

SmallInitEmb LayerNorm(SmallInit(Embedding)) in a Transformer I find that when t

PENG Bo 11 Dec 25, 2022
Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit

STORM Stochastic Tensor Optimization for Robot Motion - A GPU Robot Motion Toolkit [Install Instructions] [Paper] [Website] This package contains code

NVIDIA Research Projects 101 Dec 12, 2022
Unofficial implementation of the paper: PonderNet: Learning to Ponder in TensorFlow

PonderNet-TensorFlow This is an Unofficial Implementation of the paper: PonderNet: Learning to Ponder in TensorFlow. Official PyTorch Implementation:

1 Oct 23, 2022
Trajectory Variational Autoencder baseline for Multi-Agent Behavior challenge 2022

MABe_2022_TVAE: a Trajectory Variational Autoencoder baseline for the 2022 Multi-Agent Behavior challenge This repository contains jupyter notebooks t

Andrew Ulmer 15 Nov 08, 2022
A python library for highly configurable transformers - easing model architecture search and experimentation.

A python library for highly configurable transformers - easing model architecture search and experimentation.

Anthony Fuller 51 Nov 20, 2022
Learning to Adapt Structured Output Space for Semantic Segmentation, CVPR 2018 (spotlight)

Learning to Adapt Structured Output Space for Semantic Segmentation Pytorch implementation of our method for adapting semantic segmentation from the s

Yi-Hsuan Tsai 782 Dec 30, 2022
FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics

FusionNet_Pytorch FusionNet: A deep fully residual convolutional neural network for image segmentation in connectomics Requirements Pytorch 0.1.11 Pyt

Choi Gunho 102 Dec 13, 2022
Constrained Logistic Regression - How to apply specific constraints to logistic regression's coefficients

Constrained Logistic Regression Sample implementation of constructing a logistic regression with given ranges on each of the feature's coefficients (v

1 Dec 29, 2021
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

Microsoft 244 Jan 06, 2023
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Trans

Zhuang AI Group 105 Dec 06, 2022
DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

English | 简体中文 Introduction DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks Reference Pat

CV Newbie 28 Dec 13, 2022
Kalidokit is a blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models

Blendshape and kinematics solver for Mediapipe/Tensorflow.js face, eyes, pose, and hand tracking models.

Rich 4.5k Jan 07, 2023
EgoNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale

EgonNN: Egocentric Neural Network for Point Cloud Based 6DoF Relocalization at the City Scale Paper: EgoNN: Egocentric Neural Network for Point Cloud

19 Sep 20, 2022
A way to store images in YAML.

YAMLImg A way to store images in YAML. I made this after seeing Roadcrosser's JSON-G because it was too inspiring to ignore this opportunity. Installa

5 Mar 14, 2022