DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

Overview


English | 简体中文

Introduction

DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

Reference PatchCore anomaly detection model

plot

Major features
  • Using nominal (non-defective) example images only

  • Faiss(CPU/GPU)

  • TensorRT Deployment

Installation

$ git clone https://github.com/tbcvContributor/DeepHawkeye.git
$ pip install opencv-python
$ pip install scipy

# pytorch
$ pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html


#install faiss
# CPU-only version(currently available on Linux, OSX, and Windows)
$ conda install -c pytorch faiss-cpu
# GPU(+CPU) version (containing both CPU and GPU indices, is available on Linux systems)
$ conda install -c pytorch faiss-gpu
# or for a specific CUDA version
$ conda install -c pytorch faiss-gpu cudatoolkit=10.2 # for CUDA 10.2 

Checkpoints and Demo data

Wide ResNet-50-2 and demo data

[Google]

[Baidu],code:a14e

${ROOT}
   └——————weights
           └——————wide_r50_2.pth
   └——————demo_data
           └——————grid
                    └——————normal_data
                    └——————test_data
           └——————....

Demo

bulid normal lib
python demo_train.py -d ./demo_data/grid/normal_data -c grid
pytorch infer
python demo_test.py -d ./demo_data/grid/test_data -c grid
tensorrt infer
python demo_trt.py -d ./demo_data/grid/test_data -c grid -t ./weights/w_res_50.trt

Tutorials

  • Need normal example images to cover all scenarios as much as possible

  • Faiss Documentation Default IVFXX, PQ16

train args
def get_train_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-d','--total_img_paths',type=str, default=None)
    parser.add_argument('-c','--category',type=str, default=None)
    parser.add_argument('--batch_size', default=64)
    parser.add_argument('--embedding_layers',choices=['1_2', '2_3'], default='2_3')
    parser.add_argument('--input_size', default=(224, 224))
    parser.add_argument('--weight_path', default='./weights/wide_r50_2.pth')
    parser.add_argument('--normal_feature_save_path', default=f"./index_lib")
    parser.add_argument('--model_device', default="cuda:0")
    parser.add_argument('--max_cluster_image_num', default=1000,help='depend on CPU memory, more than total images number')
    parser.add_argument('--index_build_device', default=-1,help='CPU:-1 ,GPU number eg: 0, 1, 2 (only on Linux)')

tips:

--input_size: trade off between speed and accuracy of the result --max_cluster_image_num:If RAM allows, greater than or equal to the total number of samples

test args
def get_test_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--test_path', type=str, default=None)
    parser.add_argument('-c', '--category', type=str, default=None)
    parser.add_argument('--model_device', default="cuda:0")
    parser.add_argument('--test_batch_size', default=64)
    parser.add_argument('--embedding_layers', choices=['1_2', '2_3'], default='2_3')
    parser.add_argument('--input_size', default=(224, 224))
    parser.add_argument('--test_GPU', default=-1, help='CPU:-1,'
                                                       'GPU: num eg: 0, 1, 2'
                                                       'multi_GPUs:[0,1,...]')
    parser.add_argument('--save_heat_map_image', default=True)
    parser.add_argument('--heatmap_save_path',
                        default=fr'./results', help='heatmap save path')
    parser.add_argument('--threshold', default=2)
    parser.add_argument('--nprobe', default=10)
    parser.add_argument('--n_neighbors', type=int, default=5)
    parser.add_argument('--weight_path', default='./weights/wide_r50_2.pth')
    parser.add_argument('--normal_feature_save_path', default=f"./index_lib")

tips:

--threshold: depend on scores of anomaly data

result format:{filename}_{score}.jpg

License

This project is released under the Apache 2.0 license.

Code Reference

https://github.com/hcw-00/PatchCore_anomaly_detection embedding concat function : https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master

Owner
CV Newbie
CV Newbie
MLOps will help you to understand how to build a Continuous Integration and Continuous Delivery pipeline for an ML/AI project.

page_type languages products description sample python azure azure-machine-learning-service azure-devops Code which demonstrates how to set up and ope

1 Nov 01, 2021
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
The Ludii general game system, developed as part of the ERC-funded Digital Ludeme Project.

The Ludii General Game System Ludii is a general game system being developed as part of the ERC-funded Digital Ludeme Project (DLP). This repository h

Digital Ludeme Project 50 Jan 04, 2023
A complete end-to-end demonstration in which we collect training data in Unity and use that data to train a deep neural network to predict the pose of a cube. This model is then deployed in a simulated robotic pick-and-place task.

Object Pose Estimation Demo This tutorial will go through the steps necessary to perform pose estimation with a UR3 robotic arm in Unity. You’ll gain

Unity Technologies 187 Dec 24, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
Official Keras Implementation for UNet++ in IEEE Transactions on Medical Imaging and DLMIA 2018

UNet++: A Nested U-Net Architecture for Medical Image Segmentation UNet++ is a new general purpose image segmentation architecture for more accurate i

Zongwei Zhou 1.8k Dec 27, 2022
Focal Loss for Dense Rotation Object Detection

Convert ResNets weights from GluonCV to Tensorflow Abstract GluonCV released some new resnet pre-training weights and designed some new resnets (such

17 Nov 24, 2021
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021
Pytorch implementation of Masked Auto-Encoder

Masked Auto-Encoder (MAE) Pytorch implementation of Masked Auto-Encoder: Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, Ross Girshick

Jiyuan 22 Dec 13, 2022
Official implementation for paper Knowledge Bridging for Empathetic Dialogue Generation (AAAI 2021).

Knowledge Bridging for Empathetic Dialogue Generation This is the official implementation for paper Knowledge Bridging for Empathetic Dialogue Generat

Qintong Li 50 Dec 20, 2022
The implementation of 'Image synthesis via semantic composition'.

Image synthesis via semantic synthesis [Project Page] by Yi Wang, Lu Qi, Ying-Cong Chen, Xiangyu Zhang, Jiaya Jia. Introduction This repository gives

DV Lab 71 Jan 06, 2023
face property detection pytorch

This is the face property train code of project face-detection-project

i am x 2 Oct 18, 2021
Anomaly Localization in Model Gradients Under Backdoor Attacks Against Federated Learning

Federated_Learning This repo provides a federated learning framework that allows to carry out backdoor attacks under varying conditions. This is a ker

Arçelik ARGE Açık Kaynak Yazılım Organizasyonu 0 Nov 30, 2021
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023