DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

Overview


English | 简体中文

Introduction

DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

Reference PatchCore anomaly detection model

plot

Major features
  • Using nominal (non-defective) example images only

  • Faiss(CPU/GPU)

  • TensorRT Deployment

Installation

$ git clone https://github.com/tbcvContributor/DeepHawkeye.git
$ pip install opencv-python
$ pip install scipy

# pytorch
$ pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html


#install faiss
# CPU-only version(currently available on Linux, OSX, and Windows)
$ conda install -c pytorch faiss-cpu
# GPU(+CPU) version (containing both CPU and GPU indices, is available on Linux systems)
$ conda install -c pytorch faiss-gpu
# or for a specific CUDA version
$ conda install -c pytorch faiss-gpu cudatoolkit=10.2 # for CUDA 10.2 

Checkpoints and Demo data

Wide ResNet-50-2 and demo data

[Google]

[Baidu],code:a14e

${ROOT}
   └——————weights
           └——————wide_r50_2.pth
   └——————demo_data
           └——————grid
                    └——————normal_data
                    └——————test_data
           └——————....

Demo

bulid normal lib
python demo_train.py -d ./demo_data/grid/normal_data -c grid
pytorch infer
python demo_test.py -d ./demo_data/grid/test_data -c grid
tensorrt infer
python demo_trt.py -d ./demo_data/grid/test_data -c grid -t ./weights/w_res_50.trt

Tutorials

  • Need normal example images to cover all scenarios as much as possible

  • Faiss Documentation Default IVFXX, PQ16

train args
def get_train_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-d','--total_img_paths',type=str, default=None)
    parser.add_argument('-c','--category',type=str, default=None)
    parser.add_argument('--batch_size', default=64)
    parser.add_argument('--embedding_layers',choices=['1_2', '2_3'], default='2_3')
    parser.add_argument('--input_size', default=(224, 224))
    parser.add_argument('--weight_path', default='./weights/wide_r50_2.pth')
    parser.add_argument('--normal_feature_save_path', default=f"./index_lib")
    parser.add_argument('--model_device', default="cuda:0")
    parser.add_argument('--max_cluster_image_num', default=1000,help='depend on CPU memory, more than total images number')
    parser.add_argument('--index_build_device', default=-1,help='CPU:-1 ,GPU number eg: 0, 1, 2 (only on Linux)')

tips:

--input_size: trade off between speed and accuracy of the result --max_cluster_image_num:If RAM allows, greater than or equal to the total number of samples

test args
def get_test_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--test_path', type=str, default=None)
    parser.add_argument('-c', '--category', type=str, default=None)
    parser.add_argument('--model_device', default="cuda:0")
    parser.add_argument('--test_batch_size', default=64)
    parser.add_argument('--embedding_layers', choices=['1_2', '2_3'], default='2_3')
    parser.add_argument('--input_size', default=(224, 224))
    parser.add_argument('--test_GPU', default=-1, help='CPU:-1,'
                                                       'GPU: num eg: 0, 1, 2'
                                                       'multi_GPUs:[0,1,...]')
    parser.add_argument('--save_heat_map_image', default=True)
    parser.add_argument('--heatmap_save_path',
                        default=fr'./results', help='heatmap save path')
    parser.add_argument('--threshold', default=2)
    parser.add_argument('--nprobe', default=10)
    parser.add_argument('--n_neighbors', type=int, default=5)
    parser.add_argument('--weight_path', default='./weights/wide_r50_2.pth')
    parser.add_argument('--normal_feature_save_path', default=f"./index_lib")

tips:

--threshold: depend on scores of anomaly data

result format:{filename}_{score}.jpg

License

This project is released under the Apache 2.0 license.

Code Reference

https://github.com/hcw-00/PatchCore_anomaly_detection embedding concat function : https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master

Owner
CV Newbie
CV Newbie
Blender scripts for computing geodesic distance

GeoDoodle Geodesic distance computation for Blender meshes Table of Contents Overivew Usage Implementation Overview This addon provides an operator fo

20 Jun 08, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Source code for the paper "PLOME: Pre-training with Misspelled Knowledge for Chinese Spelling Correction" in ACL2021

PLOME:Pre-training with Misspelled Knowledge for Chinese Spelling Correction (ACL2021) This repository provides the code and data of the work in ACL20

197 Nov 26, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
[CVPR 2021] NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning

NormalFusion: Real-Time Acquisition of Surface Normals for High-Resolution RGB-D Scanning Project Page | Paper | Supplemental material #1 | Supplement

KAIST VCLAB 49 Nov 24, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
PyTorch implementations of the paper: "DR.VIC: Decomposition and Reasoning for Video Individual Counting, CVPR, 2022"

DRNet for Video Indvidual Counting (CVPR 2022) Introduction This is the official PyTorch implementation of paper: DR.VIC: Decomposition and Reasoning

tao han 35 Nov 22, 2022
NHS AI Lab Skunkworks project: Long Stayer Risk Stratification

NHS AI Lab Skunkworks project: Long Stayer Risk Stratification A pilot project for the NHS AI Lab Skunkworks team, Long Stayer Risk Stratification use

NHSX 21 Nov 14, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
VIsually-Pivoted Audio and(N) Text

VIP-ANT: VIsually-Pivoted Audio and(N) Text Code for the paper Connecting the Dots between Audio and Text without Parallel Data through Visual Knowled

Yän.PnG 16 Nov 04, 2022
Text Generation by Learning from Demonstrations

Text Generation by Learning from Demonstrations The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?). Paper arXiv Prere

38 Oct 21, 2022
Human head pose estimation using Keras over TensorFlow.

RealHePoNet: a robust single-stage ConvNet for head pose estimation in the wild.

Rafael Berral Soler 71 Jan 05, 2023
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations

TEA: A Sequential Recommendation Framework via Temporally Evolving Aggregations Requirements python 3.6 torch 1.9 numpy 1.19 Quick Start The experimen

DMIRLAB 4 Oct 16, 2022
Final project code: Implementing BicycleGAN, for CIS680 FA21 at University of Pennsylvania

680 Final Project: BicycleGAN Haoran Tang Instructions 1. Training To train the network, please run train.py. Change hyper-parameters and folder paths

Haoran Tang 0 Apr 22, 2022
A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud.

Lidar with Velocity A robust camera and Lidar fusion based velocity estimator to undistort the pointcloud. related paper: Lidar with Velocity : Motion

ISEE Research Group 164 Dec 30, 2022