DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

Overview


English | 简体中文

Introduction

DeepHawkeye is a library to detect unusual patterns in images using features from pretrained neural networks

Reference PatchCore anomaly detection model

plot

Major features
  • Using nominal (non-defective) example images only

  • Faiss(CPU/GPU)

  • TensorRT Deployment

Installation

$ git clone https://github.com/tbcvContributor/DeepHawkeye.git
$ pip install opencv-python
$ pip install scipy

# pytorch
$ pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 torchaudio==0.8.0 -f https://download.pytorch.org/whl/torch_stable.html


#install faiss
# CPU-only version(currently available on Linux, OSX, and Windows)
$ conda install -c pytorch faiss-cpu
# GPU(+CPU) version (containing both CPU and GPU indices, is available on Linux systems)
$ conda install -c pytorch faiss-gpu
# or for a specific CUDA version
$ conda install -c pytorch faiss-gpu cudatoolkit=10.2 # for CUDA 10.2 

Checkpoints and Demo data

Wide ResNet-50-2 and demo data

[Google]

[Baidu],code:a14e

${ROOT}
   └——————weights
           └——————wide_r50_2.pth
   └——————demo_data
           └——————grid
                    └——————normal_data
                    └——————test_data
           └——————....

Demo

bulid normal lib
python demo_train.py -d ./demo_data/grid/normal_data -c grid
pytorch infer
python demo_test.py -d ./demo_data/grid/test_data -c grid
tensorrt infer
python demo_trt.py -d ./demo_data/grid/test_data -c grid -t ./weights/w_res_50.trt

Tutorials

  • Need normal example images to cover all scenarios as much as possible

  • Faiss Documentation Default IVFXX, PQ16

train args
def get_train_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-d','--total_img_paths',type=str, default=None)
    parser.add_argument('-c','--category',type=str, default=None)
    parser.add_argument('--batch_size', default=64)
    parser.add_argument('--embedding_layers',choices=['1_2', '2_3'], default='2_3')
    parser.add_argument('--input_size', default=(224, 224))
    parser.add_argument('--weight_path', default='./weights/wide_r50_2.pth')
    parser.add_argument('--normal_feature_save_path', default=f"./index_lib")
    parser.add_argument('--model_device', default="cuda:0")
    parser.add_argument('--max_cluster_image_num', default=1000,help='depend on CPU memory, more than total images number')
    parser.add_argument('--index_build_device', default=-1,help='CPU:-1 ,GPU number eg: 0, 1, 2 (only on Linux)')

tips:

--input_size: trade off between speed and accuracy of the result --max_cluster_image_num:If RAM allows, greater than or equal to the total number of samples

test args
def get_test_args():
    parser = argparse.ArgumentParser()
    parser.add_argument('-d', '--test_path', type=str, default=None)
    parser.add_argument('-c', '--category', type=str, default=None)
    parser.add_argument('--model_device', default="cuda:0")
    parser.add_argument('--test_batch_size', default=64)
    parser.add_argument('--embedding_layers', choices=['1_2', '2_3'], default='2_3')
    parser.add_argument('--input_size', default=(224, 224))
    parser.add_argument('--test_GPU', default=-1, help='CPU:-1,'
                                                       'GPU: num eg: 0, 1, 2'
                                                       'multi_GPUs:[0,1,...]')
    parser.add_argument('--save_heat_map_image', default=True)
    parser.add_argument('--heatmap_save_path',
                        default=fr'./results', help='heatmap save path')
    parser.add_argument('--threshold', default=2)
    parser.add_argument('--nprobe', default=10)
    parser.add_argument('--n_neighbors', type=int, default=5)
    parser.add_argument('--weight_path', default='./weights/wide_r50_2.pth')
    parser.add_argument('--normal_feature_save_path', default=f"./index_lib")

tips:

--threshold: depend on scores of anomaly data

result format:{filename}_{score}.jpg

License

This project is released under the Apache 2.0 license.

Code Reference

https://github.com/hcw-00/PatchCore_anomaly_detection embedding concat function : https://github.com/xiahaifeng1995/PaDiM-Anomaly-Detection-Localization-master

Owner
CV Newbie
CV Newbie
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Storchastic is a PyTorch library for stochastic gradient estimation in Deep Learning

Emile van Krieken 140 Dec 30, 2022
Additional environments compatible with OpenAI gym

Decentralized Control of Quadrotor Swarms with End-to-end Deep Reinforcement Learning A codebase for training reinforcement learning policies for quad

Zhehui Huang 40 Dec 06, 2022
the code of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021)

RMA-Net This repo is the implementation of the paper: Recurrent Multi-view Alignment Network for Unsupervised Surface Registration (CVPR 2021). Paper

Wanquan Feng 205 Nov 09, 2022
The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction".

LEAR The implementation our EMNLP 2021 paper "Enhanced Language Representation with Label Knowledge for Span Extraction". **The code is in the "master

杨攀 93 Jan 07, 2023
[CVPR'21] Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild

IVOS-W Paper Learning to Recommend Frame for Interactive Video Object Segmentation in the Wild Zhaoyun Yin, Jia Zheng, Weixin Luo, Shenhan Qian, Hanli

SVIP Lab 38 Dec 12, 2022
A rule-based log analyzer & filter

Flog 一个根据规则集来处理文本日志的工具。 前言 在日常开发过程中,由于缺乏必要的日志规范,导致很多人乱打一通,一个日志文件夹解压缩后往往有几十万行。 日志泛滥会导致信息密度骤减,给排查问题带来了不小的麻烦。 以前都是用grep之类的工具先挑选出有用的,再逐条进行排查,费时费力。在忍无可忍之后决

上山打老虎 9 Jun 23, 2022
U-Time: A Fully Convolutional Network for Time Series Segmentation

U-Time & U-Sleep Official implementation of The U-Time [1] model for general-purpose time-series segmentation. The U-Sleep [2] model for resilient hig

Mathias Perslev 176 Dec 19, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021]

Robust Instance Segmentation through Reasoning about Multi-Object Occlusion [CVPR 2021] Abstract Analyzing complex scenes with DNN is a challenging ta

Irene Yuan 24 Jun 27, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
3.8% and 18.3% on CIFAR-10 and CIFAR-100

Wide Residual Networks This code was used for experiments with Wide Residual Networks (BMVC 2016) http://arxiv.org/abs/1605.07146 by Sergey Zagoruyko

Sergey Zagoruyko 1.2k Dec 29, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection.

Introduction This repo contains the official PyTorch implementation of our ICCV paper DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection. Up

133 Dec 29, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
Proto-RL: Reinforcement Learning with Prototypical Representations

Proto-RL: Reinforcement Learning with Prototypical Representations This is a PyTorch implementation of Proto-RL from Reinforcement Learning with Proto

Denis Yarats 74 Dec 06, 2022