Implementation of "Learning to Match Features with Seeded Graph Matching Network" ICCV2021

Related tags

Deep LearningSGMNet
Overview

SGMNet Implementation

Framework

PyTorch implementation of SGMNet for ICCV'21 paper "Learning to Match Features with Seeded Graph Matching Network", by Hongkai Chen, Zixin Luo, Jiahui Zhang, Lei Zhou, Xuyang Bai, Zeyu Hu, Chiew-Lan Tai, Long Quan.

This work focuses on keypoint-based image matching problem. We mitigate the qudratic complexity issue for typical GNN-based matching by leveraging a restrited set of pre-matched seeds.

This repo contains training, evaluation and basic demo sripts used in our paper. As baseline, it also includes our implementation for SuperGlue. If you find this project useful, please cite:

@article{chen2021sgmnet,
  title={Learning to Match Features with Seeded Graph Matching Network},
  author={Chen, Hongkai and Luo, Zixin and Zhang, Jiahui and Zhou, Lei and Bai, Xuyang and Hu, Zeyu and Tai, Chiew-Lan and Quan, Long},
  journal={International Conference on Computer Vision (ICCV)},
  year={2021}
}

Part of the code is borrowed or ported from

SuperPoint, for SuperPoint implementation,

SuperGlue, for SuperGlue implementation and exact auc computation,

OANet, for training scheme,

PointCN, for implementaion of PointCN block and geometric transformations,

FM-Bench, for evaluation of fundamental matrix estimation.

Please also cite these works if you find the corresponding code useful.

Requirements

We use PyTorch 1.6, later version should also be compatible. Please refer to requirements.txt for other dependencies.

If you are using conda, you may configure the environment as:

conda create --name sgmnet python=3.7 -y && \
pip install -r requirements.txt && \
conda activate sgmnet

Get started

Clone the repo:

git clone https://github.com/vdvchen/SGMNet.git && \

download model weights from here

extract weights by

tar -xvf weights.tar.gz

A quick demo for image matching can be called by:

cd demo && python demo.py --config_path configs/sgm_config.yaml

The resutls will be saved as match.png in demo folder. You may configure the matcher in corresponding yaml file.

Evaluation

We demonstrate evaluation process with RootSIFT and SGMNet. Evaluation with other features/matchers can be conducted by configuring the corresponding yaml files.

1. YFCC Evaluation

Refer to OANet repo to download raw YFCC100M dataset

Data Generation

  1. Configure datadump/configs/yfcc_root.yaml for the following entries

    rawdata_dir: path for yfcc rawdata
    feature_dump_dir: dump path for extracted features
    dataset_dump_dir: dump path for generated dataset
    extractor: configuration for keypoint extractor (2k RootSIFT by default)

  2. Generate data by

    cd datadump
    python dump.py --config_path configs/yfcc_root.yaml

    An h5py data file will be generated under dataset_dump_dir, e.g. yfcc_root_2000.hdf5

Evaluation:

  1. Configure evaluation/configs/eval/yfcc_eval_sgm.yaml for the following entries

    reader.rawdata_dir: path for yfcc_rawdata
    reader.dataset_dir: path for generated h5py dataset file
    matcher: configuration for sgmnet (we use the default setting)

  2. To run evaluation,

    cd evaluation
    python evaluate.py --config_path configs/eval/yfcc_eval_sgm.yaml

For 2k RootSIFT matching, similar results as below should be obtained,

auc th: [5 10 15 20 25 30]
approx auc: [0.634 0.729 0.783 0.818 0.843 0.861]
exact auc: [0.355 0.552 0.655 0.719 0.762 0.793]
mean match score: 17.06
mean precision: 86.08

2. ScanNet Evaluation

Download processed ScanNet evaluation data.

Data Generation

  1. Configure datadump/configs/scannet_root.yaml for the following entries

    rawdata_dir: path for ScanNet raw data
    feature_dump_dir: dump path for extracted features
    dataset_dump_dir: dump path for generated dataset
    extractor: configuration for keypoint extractor (2k RootSIFT by default)

  2. Generate data by

    cd datadump
    python dump.py --config_path configs/scannet_root.yaml

    An h5py data file will be generated under dataset_dump_dir, e.g. scannet_root_2000.hdf5

Evaluation:

  1. Configure evaluation/configs/eval/scannet_eval_sgm.yaml for the following entries

    reader.rawdata_dir: path for ScanNet evaluation data
    reader.dataset_dir: path for generated h5py dataset file
    matcher: configuration for sgmnet (we use the default setting)

  2. To run evaluation,

    cd evaluation
    python evaluate.py --config_path configs/eval/scannet_eval_sgm.yaml

For 2k RootSIFT matching, similar results as below should be obtained,

auc th: [5 10 15 20 25 30]
approx auc: [0.322 0.427 0.493 0.541 0.577 0.606]
exact auc: [0.125 0.283 0.383 0.452 0.503 0.541]
mean match score: 8.79
mean precision: 45.54

3. FM-Bench Evaluation

Refer to FM-Bench repo to download raw FM-Bench dataset

Data Generation

  1. Configure datadump/configs/fmbench_root.yaml for the following entries

    rawdata_dir: path for fmbench raw data
    feature_dump_dir: dump path for extracted features
    dataset_dump_dir: dump path for generated dataset
    extractor: configuration for keypoint extractor (4k RootSIFT by default)

  2. Generate data by

    cd datadump
    python dump.py --config_path configs/fmbench_root.yaml

    An h5py data file will be generated under dataset_dump_dir, e.g. fmbench_root_4000.hdf5

Evaluation:

  1. Configure evaluation/configs/eval/fm_eval_sgm.yaml for the following entries

    reader.rawdata_dir: path for fmbench raw data
    reader.dataset_dir: path for generated h5py dataset file
    matcher: configuration for sgmnet (we use the default setting)

  2. To run evaluation,

    cd evaluation
    python evaluate.py --config_path configs/eval/fm_eval_sgm.yaml

For 4k RootSIFT matching, similar results as below should be obtained,

CPC results:
F_recall:  0.617
precision:  0.7489
precision_post:  0.8399
num_corr:  663.838
num_corr_post:  284.455  

KITTI results:
F_recall:  0.911
precision:  0.9035133886251774
precision_post:  0.9837278538989989
num_corr:  1670.548
num_corr_post:  1121.902

TUM results:
F_recall:  0.666
precision:  0.6520260208250837
precision_post:  0.731507123852191
num_corr:  1650.579
num_corr_post:  941.846

Tanks_and_Temples results:
F_recall:  0.855
precision:  0.7452896681043316
precision_post:  0.8020184635328004
num_corr:  946.571
num_corr_post:  466.865

4. Run time and memory Evaluation

We provide a script to test run time and memory consumption, for a quick start, run

cd evaluation
python eval_cost.py --matcher_name SGM  --config_path configs/cost/sgm_cost.yaml --num_kpt=4000

You may configure the matcher in corresponding yaml files.

Visualization

For visualization of matching results on different dataset, add --vis_folder argument on evaluation command, e.g.

cd evaluation
python evaluate.py --config_path configs/eval/***.yaml --vis_folder visualization

Training

We train both SGMNet and SuperGlue on GL3D dataset. The training data is pre-generated in an offline manner, which yields about 400k pairs in total.

To generate training/validation dataset

  1. Download GL3D rawdata

  2. Configure datadump/configs/gl3d.yaml. Some important entries are

    rawdata_dir: path for GL3D raw data
    feature_dump_dir: path for extracted features
    dataset_dump_dir: path for generated dataset
    pairs_per_seq: number of pairs sampled for each sequence
    angle_th: angle threshold for sampled pairs
    overlap_th: common track threshold for sampled pairs
    extractor: configuration for keypoint extractor

  3. dump dataset by

cd datadump
python dump.py --config_path configs/gl3d.yaml

Two parts of data will be generated. (1) Extracted features and keypoints will be placed under feature_dump_dir (2) Pairwise dataset will be placed under dataset_dump_dir.

  1. After data generation, configure train/train_sgm.sh for necessary entries, including
    rawdata_path: path for GL3D raw data
    desc_path: path for extracted features
    dataset_path: path for generated dataset
    desc_suffix: suffix for keypoint files, _root_1000.hdf5 for 1k RootSIFT by default.
    log_base: log directory for training

  2. run SGMNet training scripts by

bash train_sgm.sh

our training scripts support multi-gpu training, which can be enabled by configure train/train_sgm.sh for these entries

CUDA_VISIBLE_DEVICES: id of gpus to be used
nproc_per_node: number of gpus to be used

run SuperGlue training scripts by

bash train_sg.sh
YOLOX-Paddle - A reproduction of YOLOX by PaddlePaddle

YOLOX-Paddle A reproduction of YOLOX by PaddlePaddle 数据集准备 下载COCO数据集,准备为如下路径 /ho

QuanHao Guo 6 Dec 18, 2022
Object classification with basic computer vision techniques

naive-image-classification Object classification with basic computer vision techniques. Final assignment for the computer vision course I took at univ

2 Jul 01, 2022
PyMove is a Python library to simplify queries and visualization of trajectories and other spatial-temporal data

Use PyMove and go much further Information Package Status License Python Version Platforms Build Status PyPi version PyPi Downloads Conda version Cond

Insight Data Science Lab 64 Nov 15, 2022
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
diablo2 resurrected loot filter

Only For Chinese and Traditional Chinese The filter only for Chinese and Traditional Chinese, i didn't change it for other language.Maybe you could mo

elmagnifico 249 Dec 04, 2022
Official pytorch implementation of paper "Inception Convolution with Efficient Dilation Search" (CVPR 2021 Oral).

IC-Conv This repository is an official implementation of the paper Inception Convolution with Efficient Dilation Search. Getting Started Download Imag

Jie Liu 111 Dec 31, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
NPBG++: Accelerating Neural Point-Based Graphics

[CVPR 2022] NPBG++: Accelerating Neural Point-Based Graphics Project Page | Paper This repository contains the official Python implementation of the p

Ruslan Rakhimov 57 Dec 03, 2022
Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images

BlockGAN Code release for BlockGAN: Learning 3D Object-aware Scene Representations from Unlabelled Images BlockGAN: Learning 3D Object-aware Scene Rep

41 May 18, 2022
Pytorch implementation of MixNMatch

MixNMatch: Multifactor Disentanglement and Encoding for Conditional Image Generation [Paper] Yuheng Li, Krishna Kumar Singh, Utkarsh Ojha, Yong Jae Le

910 Dec 30, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

201 Dec 29, 2022
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Federated_learning codes used for the the paper "Evaluation of Federated Learning Aggregation Algorithms" and "A Federated Learning Aggregation Algorithm for Pervasive Computing: Evaluation and Comparison"

Federated Distance (FedDist) This is the code accompanying the Percom2021 paper "A Federated Learning Aggregation Algorithm for Pervasive Computing: E

GETALP 8 Jan 03, 2023
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Interpretation of T cell states using reference single-cell atlases

Interpretation of T cell states using reference single-cell atlases ProjecTILs is a computational method to project scRNA-seq data into reference sing

Cancer Systems Immunology Lab 139 Jan 03, 2023
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech

Meta-TTS: Meta-Learning for Few-shot SpeakerAdaptive Text-to-Speech This repository is the official implementation of "Meta-TTS: Meta-Learning for Few

Sung-Feng Huang 128 Dec 25, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023