PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

Overview

PyTorch implementation of MSBG hearing loss model and MBSTOI intelligibility metric

This repository contains the implementation of MSBG hearing loss model and MBSTOI intellibility metric in PyTorch. The models are differentiable and can be used as a loss function to train a neural network. Both models follow Python implementation of MSBG and MBSTOI provided by organizers of Clarity Enhancement challenge. Please check the implementation at Clarity challenge repository for more information about the models.

Please note that the differentiable models are approximations of the original models and are intended to be used to train neural networks, not to give exactly the same outputs as the original models.

Requirements and installation

The model uses parts of the functionality of the original MSBG and MBSTOI models. First, download the Clarity challenge repository and set its location as CLARITY_ROOT. To install the necessary requirements:

pip install -r requirements.txt
pushd .
cd $CLARITY_ROOT/projects/MSBG/packages/matlab_mldivide
python setup.py install
popd

Additionally, set paths to the Clarity repository and this repository in path.sh and run the path.sh script before using the provided modules.

. path.sh

Tests and example script

Directory tests contains scipts to test the correspondance of the differentiable modules compared to their original implementation. To run the tests, you need the Clarity data, which can be obtained from the Clarity challenge repository. Please set the paths to the data in the scripts.

MSBG test

The tests of the hearing loss compare the outputs of functions provided by the original implementation and the differentiable version. The output shows the mean differences of the output signals

Test measure_rms, mean difference 9.629646580133766e-09
Test src_to_cochlea_filt forward, mean difference 9.830486283616455e-16
Test src_to_cochlea_filt backward, mean difference 6.900756131702976e-15
Test smear, mean difference 0.00019685214410863303
Test gammatone_filterbank, mean difference 5.49958965492409e-07
Test compute_envelope, mean difference 4.379759604381869e-06
Test recruitment, mean difference 3.1055169855373764e-12
Test cochlea, mean difference 2.5698933453410134e-06
Test hearing_loss, mean difference 2.2326804706160673e-06

MBSTOI test

The test of the intelligbility metric compares the MBSTOI values obtained by the original and differentiable model over the development set of Clarity challenge. The following graph shows the comparison. Correspondance of MBSTOI metrics.

Example script

The script example.py shows how to use the provided module as a loss function for training the neural network. In the script, we use a simple small model and overfit on one example. The descreasing loss function confirms that the provided modules are differentiable.

Loss function with MSBG and MBSTOI loss

Citation

If you use this work, please cite:

@inproceedings{Zmolikova2021BUT,
  author    = {Zmolikova, Katerina and \v{C}ernock\'{y}, Jan "Honza"},
  title     = {{BUT system for the first Clarity enhancement challenge}},
  year      = {2021},
  booktitle = {The Clarity Workshop on Machine Learning Challenges for Hearing Aids (Clarity-2021)},
}
Owner
BUT <a href=[email protected]">
Simple machine learning library / 簡單易用的機器學習套件

FukuML Simple machine learning library / 簡單易用的機器學習套件 Installation $ pip install FukuML Tutorial Lesson 1: Perceptron Binary Classification Learning Al

Fukuball Lin 279 Sep 15, 2022
Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification

Fine-grainedImageClassification Weakly Supervised Posture Mining with Reverse Cross-entropy for Fine-grained Classification We trained model here: lin

ZhenchaoTang 14 Oct 21, 2022
An experiment to bait a generalized frontrunning MEV bot

Honeypot 🍯 A simple experiment that: Creates a honeypot contract Baits a generalized fronturnning bot with a unique transaction Analyze bot behaviour

0x1355 14 Nov 24, 2022
Add-on for importing and auto setup of character creator 3 character exports.

CC3 Blender Tools An add-on for importing and automatically setting up materials for Character Creator 3 character exports. Using Blender in the Chara

260 Jan 05, 2023
Codes for building and training the neural network model described in Domain-informed neural networks for interaction localization within astroparticle experiments.

Domain-informed Neural Networks Codes for building and training the neural network model described in Domain-informed neural networks for interaction

DIDACTS 0 Dec 13, 2021
Deep Learning for humans

Keras: Deep Learning for Python Under Construction In the near future, this repository will be used once again for developing the Keras codebase. For

Keras 57k Jan 09, 2023
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
PyTorch implementation of "PatchGame: Learning to Signal Mid-level Patches in Referential Games" to appear in NeurIPS 2021

PatchGame: Learning to Signal Mid-level Patches in Referential Games This repository is the official implementation of the paper - "PatchGame: Learnin

Kamal Gupta 22 Mar 16, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Train Dense Passage Retriever (DPR) with a single GPU

Gradient Cached Dense Passage Retrieval Gradient Cached Dense Passage Retrieval (GC-DPR) - is an extension of the original DPR library. We introduce G

Luyu Gao 92 Jan 02, 2023
Rotary Transformer

[中文|English] Rotary Transformer Rotary Transformer is an MLM pre-trained language model with rotary position embedding (RoPE). The RoPE is a relative

325 Jan 03, 2023
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
DAT4 - General Assembly's Data Science course in Washington, DC

DAT4 Course Repository Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15). Instructors: Sinan Ozdemir

Kevin Markham 779 Dec 25, 2022
Real-time LIDAR-based Urban Road and Sidewalk detection for Autonomous Vehicles 🚗

urban_road_filter: a real-time LIDAR-based urban road and sidewalk detection algorithm for autonomous vehicles Dependency ROS (tested with Kinetic and

JKK - Vehicle Industry Research Center 180 Dec 12, 2022
Research code for CVPR 2021 paper "End-to-End Human Pose and Mesh Reconstruction with Transformers"

MeshTransformer ✨ This is our research code of End-to-End Human Pose and Mesh Reconstruction with Transformers. MEsh TRansfOrmer is a simple yet effec

Microsoft 473 Dec 31, 2022
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Self-paced Contrastive Learning (SpCL) The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID

Yixiao Ge 286 Dec 21, 2022
Code for ICML 2021 paper: How could Neural Networks understand Programs?

OSCAR This repository contains the source code of our ICML 2021 paper How could Neural Networks understand Programs?. Environment Run following comman

Dinglan Peng 115 Dec 17, 2022