DAT4 - General Assembly's Data Science course in Washington, DC

Related tags

Deep LearningDAT4
Overview

DAT4 Course Repository

Course materials for General Assembly's Data Science course in Washington, DC (12/15/14 - 3/16/15).

Instructors: Sinan Ozdemir and Kevin Markham (Data School blog, email newsletter, YouTube channel)

Teaching Assistant: Brandon Burroughs

Office hours: 1-3pm on Saturday and Sunday (Starbucks at 15th & K), 5:15-6:30pm on Monday (GA)

Course Project information

Monday Wednesday
12/15: Introduction 12/17: Python
12/22: Getting Data 12/24: No Class
12/29: No Class 12/31: No Class
1/5: Git and GitHub 1/7: Pandas
Milestone: Question and Data Set
1/12: Numpy, Machine Learning, KNN 1/14: scikit-learn, Model Evaluation Procedures
1/19: No Class 1/21: Linear Regression
1/26: Logistic Regression,
Preview of Other Models
1/28: Model Evaluation Metrics
Milestone: Data Exploration and Analysis Plan
2/2: Working a Data Problem 2/4: Clustering and Visualization
Milestone: Deadline for Topic Changes
2/9: Naive Bayes 2/11: Natural Language Processing
2/16: No Class 2/18: Decision Trees
Milestone: First Draft
2/23: Ensembling 2/25: Databases and MapReduce
3/2: Recommenders 3/4: Advanced scikit-learn
Milestone: Second Draft (Optional)
3/9: Course Review 3/11: Project Presentations
3/16: Project Presentations

Installation and Setup

  • Install the Anaconda distribution of Python 2.7x.
  • Install Git and create a GitHub account.
  • Once you receive an email invitation from Slack, join our "DAT4 team" and add your photo!

Class 1: Introduction

  • Introduction to General Assembly
  • Course overview: our philosophy and expectations (slides)
  • Data science overview (slides)
  • Tools: check for proper setup of Anaconda, overview of Slack

Homework:

  • Resolve any installation issues before next class.

Optional:

Class 2: Python

Homework:

Optional:

Resources:

Class 3: Getting Data

Homework:

  • Think about your project question, and start looking for data that will help you to answer your question.
  • Prepare for our next class on Git and GitHub:
    • You'll need to know some command line basics, so please work through GA's excellent command line tutorial and then take this brief quiz.
    • Check for proper setup of Git by running git clone https://github.com/justmarkham/DAT-project-examples.git. If that doesn't work, you probably need to install Git.
    • Create a GitHub account. (You don't need to download anything from GitHub.)

Optional:

  • If you aren't feeling comfortable with the Python we've done so far, keep practicing using the resources above!

Resources:

Class 4: Git and GitHub

  • Special guest: Nick DePrey presenting his class project from DAT2
  • Git and GitHub (slides)

Homework:

  • Project milestone: Submit your question and data set to your folder in DAT4-students before class on Wednesday! (This is a great opportunity to practice writing Markdown and creating a pull request.)

Optional:

  • Clone this repo (DAT4) for easy access to the course files.

Resources:

Class 5: Pandas

Homework:

Optional:

Resources:

  • For more on Pandas plotting, read the visualization page from the official Pandas documentation.
  • To learn how to customize your plots further, browse through this notebook on matplotlib.
  • To explore different types of visualizations and when to use them, Choosing a Good Chart is a handy one-page reference, and Columbia's Data Mining class has an excellent slide deck.

Class 6: Numpy, Machine Learning, KNN

  • Numpy (code)
  • "Human learning" with iris data (code, solution)
  • Machine Learning and K-Nearest Neighbors (slides)

Homework:

  • Read this excellent article, Understanding the Bias-Variance Tradeoff, and be prepared to discuss it in class on Wednesday. (You can ignore sections 4.2 and 4.3.) Here are some questions to think about while you read:
    • In the Party Registration example, what are the features? What is the response? Is this a regression or classification problem?
    • In the interactive visualization, try using different values for K across different sets of training data. What value of K do you think is "best"? How do you define "best"?
    • In the visualization, what do the lighter colors versus the darker colors mean? How is the darkness calculated?
    • How does the choice of K affect model bias? How about variance?
    • As you experiment with K and generate new training data, how can you "see" high versus low variance? How can you "see" high versus low bias?
    • Why should we care about variance at all? Shouldn't we just minimize bias and ignore variance?
    • Does a high value for K cause over-fitting or under-fitting?

Resources:

Class 7: scikit-learn, Model Evaluation Procedures

Homework:

Optional:

  • Practice what we learned in class today!
    • If you have gathered your project data already: Try using KNN for classification, and then evaluate your model. Don't worry about using all of your features, just focus on getting the end-to-end process working in scikit-learn. (Even if your project is regression instead of classification, you can easily convert a regression problem into a classification problem by converting numerical ranges into categories.)
    • If you don't yet have your project data: Pick a suitable dataset from the UCI Machine Learning Repository, try using KNN for classification, and evaluate your model. The Glass Identification Data Set is a good one to start with.
    • Either way, you can submit your commented code to DAT4-students, and we'll give you feedback.

Resources:

Class 8: Linear Regression

Homework:

Optional:

  • Similar to last class, your optional exercise is to practice what we have been learning in class, either on your project data or on another dataset.

Resources:

Class 9: Logistic Regression, Preview of Other Models

Resources:

Class 10: Model Evaluation Metrics

  • Finishing model evaluation procedures (slides, code)
    • Review of test set approach
    • Cross-validation
  • Model evaluation metrics (slides)
    • Regression:
      • Root Mean Squared Error (code)
    • Classification:

Homework:

Optional:

Resources:

Class 11: Working a Data Problem

  • Today we will work on a real world data problem! Our data is stock data over 7 months of a fictional company ZYX including twitter sentiment, volume and stock price. Our goal is to create a predictive model that predicts forward returns.

  • Project overview (slides)

    • Be sure to read documentation thoroughly and ask questions! We may not have included all of the information you need...

Class 12: Clustering and Visualization

  • The slides today will focus on our first look at unsupervised learning, K-Means Clustering!
  • The code for today focuses on two main examples:
    • We will investigate simple clustering using the iris data set.
    • We will take a look at a harder example, using Pandora songs as data. See data.

Homework:

  • Read Paul Graham's A Plan for Spam and be prepared to discuss it in class on Monday. Here are some questions to think about while you read:
    • Should a spam filter optimize for sensitivity or specificity, in Paul's opinion?
    • Before he tried the "statistical approach" to spam filtering, what was his approach?
    • How exactly does his statistical filtering system work?
    • What did Paul say were some of the benefits of the statistical approach?
    • How good was his prediction of the "spam of the future"?
  • Below are the foundational topics upon which Monday's class will depend. Please review these materials before class:
    • Confusion matrix: Kevin's guide roughly mirrors the lecture from class 10.
    • Sensitivity and specificity: Rahul Patwari has an excellent video (9 minutes).
    • Basics of probability: These introductory slides (from the OpenIntro Statistics textbook) are quite good and include integrated quizzes. Pay specific attention to these terms: probability, sample space, mutually exclusive, independent.
  • You should definitely be working on your project! Your rough draft is due in two weeks!

Resources:

Class 13: Naive Bayes

Resources:

Homework:

  • Download all of the NLTK collections.
    • In Python, use the following commands to bring up the download menu.
    • import nltk
    • nltk.download()
    • Choose "all".
    • Alternatively, just type nltk.download('all')
  • Install two new packages: textblob and lda.
    • Open a terminal or command prompt.
    • Type pip install textblob and pip install lda.

Class 14: Natural Language Processing

  • Overview of Natural Language Processing (slides)
  • Real World Examples
  • Natural Language Processing (code)
  • NLTK: tokenization, stemming, lemmatization, part of speech tagging, stopwords, Named Entity Recognition (Stanford NER Tagger), TF-IDF, LDA, document summarization
  • Alternative: TextBlob

Resources:

Class 15: Decision Trees

Homework:

  • By next Wednesday (before class), review the project drafts of your two assigned peers according to these guidelines. You should upload your feedback as a Markdown (or plain text) document to the "reviews" folder of DAT4-students. If your last name is Smith and you are reviewing Jones, you should name your file smith_reviews_jones.md.

Resources:

Installing Graphviz (optional):

  • Mac:
  • Windows:
    • Download and install MSI file
    • Add it to your Path: Go to Control Panel, System, Advanced System Settings, Environment Variables. Under system variables, edit "Path" to include the path to the "bin" folder, such as: C:\Program Files (x86)\Graphviz2.38\bin

Class 16: Ensembling

Resources:

Class 17: Databases and MapReduce

Resources:

Class 18: Recommenders

  • Recommendation Engines slides
  • Recommendation Engine Example code

Resources:

Class 19: Advanced scikit-learn

Homework:

Resources:

Class 20: Course Review

Resources:

Class 21: Project Presentations

Class 22: Project Presentations

Owner
Kevin Markham
Founder of Data School
Kevin Markham
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible

Python script that analyses the given datasets and comes up with the best polynomial regression representation with the smallest polynomial degree possible, to be the most reliable with the least com

Nikolas B Virionis 2 Aug 01, 2022
Moving Object Segmentation in 3D LiDAR Data: A Learning-based Approach Exploiting Sequential Data

LiDAR-MOS: Moving Object Segmentation in 3D LiDAR Data This repo contains the code for our paper: Moving Object Segmentation in 3D LiDAR Data: A Learn

Photogrammetry & Robotics Bonn 394 Dec 29, 2022
GPU-accelerated Image Processing library using OpenCL

pyclesperanto pyclesperanto is a python package for clEsperanto - a multi-language framework for GPU-accelerated image processing. clEsperanto uses Op

17 Dec 25, 2022
Deep Image Matting implementation in PyTorch

Deep Image Matting Deep Image Matting paper implementation in PyTorch. Differences "fc6" is dropped. Indices pooling. "fc6" is clumpy, over 100 millio

Yang Liu 724 Dec 27, 2022
FAVD: Featherweight Assisted Vulnerability Discovery

FAVD: Featherweight Assisted Vulnerability Discovery This repository contains the replication package for the paper "Featherweight Assisted Vulnerabil

secureIT 4 Sep 16, 2022
StyleGAN2-ADA - Official PyTorch implementation

Need Help? If you’re new to StyleGAN2-ADA and looking to get started, please check out this video series from a course Lia Coleman and I taught in Oct

Derrick Schultz 217 Jan 04, 2023
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Official repository for Hierarchical Opacity Propagation for Image Matting

HOP-Matting Official repository for Hierarchical Opacity Propagation for Image Matting 🚧 🚧 🚧 Under Construction 🚧 🚧 🚧 🚧 🚧 🚧   Coming Soon   

Li Yaoyi 54 Dec 30, 2021
EMNLP'2021: Simple Entity-centric Questions Challenge Dense Retrievers

EntityQuestions This repository contains the EntityQuestions dataset as well as code to evaluate retrieval results from the the paper Simple Entity-ce

Princeton Natural Language Processing 119 Sep 28, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Bayesian Optimization using GPflow

Note: This package is for use with GPFlow 1. For Bayesian optimization using GPFlow 2 please see Trieste, a joint effort with Secondmind. GPflowOpt GP

GPflow 257 Dec 26, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
Training a Resilient Q-Network against Observational Interference, Causal Inference Q-Networks

Obs-Causal-Q-Network AAAI 2022 - Training a Resilient Q-Network against Observational Interference Preprint | Slides | Colab Demo | Environment Setup

23 Nov 21, 2022
MPI Interest Group on Algorithms on 1st semester 2021

MPI Algorithms Interest Group Introduction Lecturer: Steve Yan Location: TBA Time Schedule: TBA Semester: 1 Useful URLs Typora: https://typora.io Goog

Ex10si0n 13 Sep 08, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
pytorch implementation for Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network arXiv:1609.04802

PyTorch SRResNet Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs

Jiu XU 436 Jan 09, 2023