This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming"

Overview

Coresets via Bilevel Optimization

This is the reference implementation for "Coresets via Bilevel Optimization for Continual Learning and Streaming" https://arxiv.org/pdf/2006.03875.pdf.

This repository also contains the implementation of the selection via Nyström proxy used for selecting batches in "Semi-supervised Batch Active Learning via Bilevel Optimization" https://arxiv.org/pdf/2010.09654. Selection via the Nyström proxy supports data augmentation, it is faster for larger coresets and hence supersedes the representer proxy in data summarization scenarios.

Overview

To get started with the library, check out demo.ipynb Open In Colab that shows how to build coresets for a toy regression problem and for MNIST classification. The following snippet outlines the general usage:

import bilevel_coreset
import loss_utils
import numpy as np

x, y = load_data()

# define proxy kernel function
linear_kernel_fn = lambda x1, x2: np.dot(x1, x2.T)

coreset_size = 10

coreset_constructor = bilevel_coreset.BilevelCoreset(outer_loss_fn=loss_utils.cross_entropy,
                                                    inner_loss_fn=loss_utils.cross_entropy,
                                                    out_dim=y.shape[1])
coreset_inds, coreset_weights = coreset_constructor.build_with_representer_proxy_batch(x, y, 
                                                    coreset_size, linear_kernel_fn, inner_reg=1e-3)
x_coreset, y_coreset = x[coreset_inds], y[coreset_inds]

Note: if you are planning to use the library on your problem, the most important hyperparameter to tune is inner_reg, the regularizer of the inner objective in the representer proxy - try the grid [10-2, 10-3, 10-4, 10-5, 10-6].

Requirements

Python 3 is required. To install the required dependencies, run:

pip install -r requirements.txt

If you are planning to use the NTK proxy, consider installing the GPU version of JAX: instructions here. If you would like to run the experiments, add the project root to your PYTHONPATH env variable.

Data Summarization

Change dir to data_summarization. For running and plotting the MNIST summarization experiment, adjust the globals in runner.py to your setup and run:

python runner.py --exp cnn_mnist
python plotter.py --exp cnn_mnist

Similarly, for the CIFAR-10 summary for a version of ResNet-18 run:

python runner.py --exp resnet_cifar
python plotter.py --exp resnet_cifar

For running the Kernel Ridge Regression experiment, you first need to generate the kernel with python generate_cntk.py. Note: this implementation differs in the kernel choice in generate_kernel() from the paper. For details on the original kernel, please refer to the paper. Once you generated the kernel, generate the results by:

python runner.py --exp krr_cifar
python plotter.py --exp krr_cifar 

Continual Learning and Streaming

We showcase the usage our coreset construction in continual learning and streaming with memory replay. The buffer regularizer beta is tuned individually for each method. We provide the best betas from [0.01, 0.1, 1.0, 10.0, 100.0, 1000.0] for each method in cl_results/ and streaming_results/.

Running the Experiments

Change dir to cl_streaming. After this, you can run individual experiments, e.g.:

python cl.py --buffer_size 100 --dataset splitmnist --seed 0 --method coreset --beta 100.0

You can also run the continual learning and streaming experiments with grid search over beta on datasets derived from MNIST by adjusting the globals in runner.py to your setup and running:

python runner.py --exp cl
python runner.py --exp streaming
python runner.py --exp imbalanced_streaming

The table of result can be displayed by running python process_results.py with the corresponding --exp argument. For example, python process_results.py --exp imbalanced_streaming produces:

Method \ Dataset splitmnistimbalanced
reservoir 80.60 +- 4.36
cbrs 89.71 +- 1.31
coreset 92.30 +- 0.23

The experiments derived from CIFAR-10 can be similarly run by:

python cifar_runner.py --exp cl
python process_results --exp splitcifar
python cifar_runner.py --exp imbalanced_streaming
python process_results --exp imbalanced_streaming_cifar

Selection via the Nyström proxy

The Nyström proxy was proposed to support data augmentations. It is also faster for larger coresets than the representer proxy. An example of running the selection on CIFAR-10 can be found in batch_active_learning/nystrom_example.py.

Citation

If you use the code in a publication, please cite the paper:

@article{borsos2020coresets,
      title={Coresets via Bilevel Optimization for Continual Learning and Streaming}, 
      author={Zalán Borsos and Mojmír Mutný and Andreas Krause},
      year={2020},
      journal={arXiv preprint arXiv:2006.03875}
}
Owner
Zalán Borsos
PhD student at ETH Zurich
Zalán Borsos
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice,

LOFO (Leave One Feature Out) Importance calculates the importances of a set of features based on a metric of choice, for a model of choice, by iteratively removing each feature from the set, and eval

Ahmet Erdem 691 Dec 23, 2022
Pytorch Implementation of PointNet and PointNet++++

Pytorch Implementation of PointNet and PointNet++ This repo is implementation for PointNet and PointNet++ in pytorch. Update 2021/03/27: (1) Release p

Luigi Ariano 1 Nov 11, 2021
Romanian Automatic Speech Recognition from the ROBIN project

RobinASR This repository contains Robin's Automatic Speech Recognition (RobinASR) for the Romanian language based on the DeepSpeech2 architecture, tog

RACAI 10 Jan 01, 2023
MassiveSumm: a very large-scale, very multilingual, news summarisation dataset

MassiveSumm: a very large-scale, very multilingual, news summarisation dataset This repository contains links to data and code to fetch and reproduce

Daniel Varab 19 Dec 16, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
A library that can print Python objects in human readable format

objprint A library that can print Python objects in human readable format Install pip install objprint Usage op Use op() (or objprint()) to print obj

319 Dec 25, 2022
[ACL 20] Probing Linguistic Features of Sentence-level Representations in Neural Relation Extraction

REval Table of Contents Introduction Overview Requirements Installation Probing Usage Citation License 🎓 Introduction REval is a simple framework for

13 Jan 06, 2023
A pyparsing-based library for parsing SOQL statements

CONTRIBUTORS WANTED!! Installation pip install python-soql-parser or, with poetry poetry add python-soql-parser Usage from python_soql_parser import p

Kicksaw 0 Jun 07, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
basic tutorial on pytorch

Quick Tutorial on PyTorch PyTorch Basics Linear Regression Logistic Regression Artificial Neural Networks Convolutional Neural Networks Recurrent Neur

7 Sep 15, 2022
Evolution Strategies in PyTorch

Evolution Strategies This is a PyTorch implementation of Evolution Strategies. Requirements Python 3.5, PyTorch = 0.2.0, numpy, gym, universe, cv2 Wh

Andrew Gambardella 333 Nov 14, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
基于Paddle框架的arcface复现

arcface-Paddle 基于Paddle框架的arcface复现 ArcFace-Paddle 本项目基于paddlepaddle框架复现ArcFace,并参加百度第三届论文复现赛,将在2021年5月15日比赛完后提供AIStudio链接~敬请期待 参考项目: InsightFace Padd

QuanHao Guo 16 Dec 15, 2022
A programming language written with python

Kaoft A programming language written with python How to use A simple Hello World: c="Hello World" c Output: "Hello World" Operators: a=12

1 Jan 24, 2022
A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing"

A PyTorch implementation of "Pathfinder Discovery Networks for Neural Message Passing" (WebConf 2021). Abstract In this work we propose Pathfind

Benedek Rozemberczki 49 Dec 01, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
A High-Quality Real Time Upscaler for Anime Video

Anime4K Anime4K is a set of open-source, high-quality real-time anime upscaling/denoising algorithms that can be implemented in any programming langua

15.7k Jan 06, 2023
[ICCV' 21] "Unsupervised Point Cloud Pre-training via Occlusion Completion"

OcCo: Unsupervised Point Cloud Pre-training via Occlusion Completion This repository is the official implementation of paper: "Unsupervised Point Clou

Hanchen 204 Dec 24, 2022