Pytorch implementation of BRECQ, ICLR 2021

Related tags

Deep LearningBRECQ
Overview

BRECQ

Pytorch implementation of BRECQ, ICLR 2021

@inproceedings{
li&gong2021brecq,
title={BRECQ: Pushing the Limit of Post-Training Quantization by Block Reconstruction},
author={Yuhang Li and Ruihao Gong and Xu Tan and Yang Yang and Peng Hu and Qi Zhang and Fengwei Yu and Wei Wang and Shi Gu},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=POWv6hDd9XH}
}

Pretrained models

We provide all the pretrained models and they can be accessed via torch.hub

For example: use res18 = torch.hub.load('yhhhli/BRECQ', model='resnet18', pretrained=True) to get the pretrained ResNet-18 model.

If you encounter URLError when downloading the pretrained network, it's probably a network failure. An alternative way is to use wget to manually download the file, then move it to ~/.cache/torch/checkpoints, where the load_state_dict_from_url function will check before downloading it.

For example:

wget https://github.com/yhhhli/BRECQ/releases/download/v1.0/resnet50_imagenet.pth.tar 
mv resnet50_imagenet.pth.tar ~/.cache/torch/checkpoints

Usage

python main_imagenet.py --data_path PATN/TO/DATA --arch resnet18 --n_bits_w 2 --channel_wise --n_bits_a 4 --act_quant --test_before_calibration

You can get the following output:

Quantized accuracy before brecq: 0.13599999248981476
Weight quantization accuracy: 66.32799530029297
Full quantization (W2A4) accuracy: 65.21199798583984
Comments
  • how to reproduce zero data result?

    how to reproduce zero data result?

    as title.

    there is a bug: https://github.com/yhhhli/BRECQ/blob/da93abc4f7e3ef437b356a2df8a5ecd8c326556e/main_imagenet.py#L173

    args.batchsize should be args.workers

    opened by yyfcc17 6
  • why not quantize  the activation of  the last conv layer in a block

    why not quantize the activation of the last conv layer in a block

    Hi, Thanks for the release of your code. But I have one problem regarding the detail of the implementation. In quant_block.py, take the following code of ResNet-18 and ResNet-34 for example. The disable_act_quant is set True for conv2, which disables the quantization of the output of conv2.

    class QuantBasicBlock(BaseQuantBlock):
        """
        Implementation of Quantized BasicBlock used in ResNet-18 and ResNet-34.
        """
        def __init__(self, basic_block: BasicBlock, weight_quant_params: dict = {}, act_quant_params: dict = {}):
            super().__init__(act_quant_params)
            self.conv1 = QuantModule(basic_block.conv1, weight_quant_params, act_quant_params)
            self.conv1.activation_function = basic_block.relu1
            self.conv2 = QuantModule(basic_block.conv2, weight_quant_params, act_quant_params, disable_act_quant=True)
    
            # modify the activation function to ReLU
            self.activation_function = basic_block.relu2
    
            if basic_block.downsample is None:
                self.downsample = None
            else:
                self.downsample = QuantModule(basic_block.downsample[0], weight_quant_params, act_quant_params,
                                              disable_act_quant=True)
            # copying all attributes in original block
            self.stride = basic_block.stride
    

    It will cause a boost in accuracy, the following is the result I get use the your code and the same ImageNet dataset you used in the paper. [1] and [2] denotes the modification I did to the original code.

    image

    [1]: quant_block.py→QuantBasicBlock→__init__→self.conv2=QuantModule(... , disable_act_quant=True) self.downsample = QuantModule(basic_block.downsample[0], weight_quant_params, act_quant_params, disable_act_quant=True). Change from True to False; [2]: quant_block.py→QuantInvertedResidual→__init__→self.conv=nn.Sequential(..., QuantModule(... , disable_act_quant=True), change from True to False

    But I do not think it is applicable for most of NPUs, which do quantization of every output of conv layer. So why not quantize the activation of the last conv layer in a block? Is there any particular reason for this? Also, for the methods you compared with in your paper, have you checked whether they do the same thing as you do or not?

    opened by frankgt 3
  • disable act quantization is designed for convolution

    disable act quantization is designed for convolution

    Hi, Very impressive coding.

    There is a question about the quantization of activation values.

    In the code:

    disable act quantization is designed for convolution before elemental-wise operation,

    in that case, we apply activation function and quantization after ele-wise op.

    Why can it be replaced like this?

    Thanks

    opened by xiayizhan2017 2
  • How to deal with data parallel and distributed data parallel?

    How to deal with data parallel and distributed data parallel?

    On my eyes, your code is just running with single gpu while I need to test this code with multi-gpu for other implementations. I just want to check that you have ran your code using data parallel and distributed data parallel.

    opened by jang0977 2
  • What is the purpose for setting retain_graph=True?

    What is the purpose for setting retain_graph=True?

    https://github.com/yhhhli/BRECQ/blob/2888b29de0a88ece561ae2443defc758444e41c1/quant/block_recon.py#L91

    What is the purpose for setting retain_graph=True?

    opened by un-knight 2
  • Cannot reproduce the accuracy

    Cannot reproduce the accuracy

    Greetings,

    Really appreciate your open source contribution.

    However, it seems the accuracy mentioned in the paper cannot be reproduced applying the standard Imagenet. For instance, with the full precision model, I have tested Resnet 18 (70.186%), MobileNetv2(71.618%), which is slightly lower than the results from your paper (71.08, 72.49 respectively).

    Have you utilized any preprocessing techniques other than imagenet.build_imagenet_data?

    Thanks

    opened by mike-zyz 2
  • suggest replacing .view with .reshape in accuracy() function

    suggest replacing .view with .reshape in accuracy() function

    Got an error:

    Traceback (most recent call last):
      File "main_imagenet.py", line 198, in <module>
        print('Quantized accuracy before brecq: {}'.format(validate_model(test_loader, qnn)))
      File "/home/xxxx/anaconda3/envs/torch/lib/python3.7/site-packages/torch/autograd/grad_mode.py", line 27, in decorate_context
        return func(*args, **kwargs)
      File "main_imagenet.py", line 108, in validate_model
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
      File "main_imagenet.py", line 77, in accuracy
        correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
    RuntimeError: view size is not compatible with input tensor's size and stride (at least one dimension spans across two contiguous subspaces). Use .reshape(...) instead.
    

    So suggest replacing .view with .reshape in accuracy() function.

    opened by un-knight 1
  • channel_wise quantization

    channel_wise quantization

    Hi, nice idea for quantizaton But it seems that the paper(not include the appendix) did not point that it is channel-wise quantization. however, the code showed it is. As we know, it is of course that channel-wise quntization would outperform layer-wise quantization. So, maybe it's hard to say that the performance of your method is close to QAT

    opened by shiyuetianqiang 1
  • Some questions about implementation details

    Some questions about implementation details

    Hello, thank you for an interesting paper and nice code.

    I have two questions concerning implementation details.

    1. Does the "one-by-one" block reconstruction mentioned in the paper mean that input to each block comes from already quantized preceding blocks, i.e. each block may correct quantization errors coming from previous blocks? Or maybe input to each block is collected from the full-precision model?
    2. Am I correct in my understanding that in block-wise reconstruction objective you use gradients for each object in calibration sample independently (i.e. no gradient averaging or smth, like in Adam mentioned on the paper)? Besides, what is happening here in data_utils.py, why do you add 1.0 to the gradients?
    cached_grads = cached_grads.abs() + 1.0
    # scaling to make sure its mean is 1
    # cached_grads = cached_grads * torch.sqrt(cached_grads.numel() / cached_grads.pow(2).sum())
    

    Thank you for your time and consideration!

    opened by AndreevP 0
  • Quantization doesn't work?

    Quantization doesn't work?

    Hi,

    So I tried running your code on CIFAR-10 with a pre-trained ResNet50 model. I've attached the code below. My accuracy however does not come nearly as close to the float model which is around 93% but after quanitzation: I get:

    • Accuracy of the network on the 10000 test images: 10.0 % top5: 52.28 %

    Please help me with this. The code is inside the zip file.

    main_cifar.zip s

    opened by praneet195 0
  • 在使用论文中提出的Fisher-diag方式进行Hessian估计时会提示Trying to backward through the graph a second time

    在使用论文中提出的Fisher-diag方式进行Hessian估计时会提示Trying to backward through the graph a second time

    如文中所提出的Fisher-diag方式来估计Hessian矩阵,需要计算每一层pre-activation的梯度。但在实际代码运行时,save_grad_data中的cur_grad = get_grad(cali_data[i * batch_size:(i + 1) * batch_size])在执行到第二个batch的时候会报错Trying to backward through the graph a second time,第一个batch的数据并不会报错。不知道作者是否遇到过类似的情况?

    opened by ariescts 2
  • Cuda Error when launching example

    Cuda Error when launching example

    [email protected]:/path_to/BRECQ# python main_imagenet.py --data_path /path_to/IMAGENET_2012/ --arch resnet18 --n_bits_w 2 --channel_wise --n_bits_a 4 --act_quant --test_before_calibration You are using fake SyncBatchNorm2d who is actually the official BatchNorm2d ==> Using Pytorch Dataset Downloading: "https://github.com/yhhhli/BRECQ/releases/download/v1.0/resnet18_imagenet.pth.tar" to /root/.cache/torch/hub/checkpoints/resnet18_imagenet.pth.tar 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 44.6M/44.6M [00:27<00:00, 1.70MB/s] Traceback (most recent call last): File "main_imagenet.py", line 178, in cnn.cuda() File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 680, in cuda return self._apply(lambda t: t.cuda(device)) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 570, in _apply module._apply(fn) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 593, in _apply param_applied = fn(param) File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 680, in return self._apply(lambda t: t.cuda(device)) RuntimeError: CUDA error: out of memory CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect. For debugging consider passing CUDA_LAUNCH_BLOCKING=1.

    opened by L-ED 1
Owner
Yuhang Li
Research Intern at @SenseTime Group Limited
Yuhang Li
Deploy recommendation engines with Edge Computing

RecoEdge: Bringing Recommendations to the Edge A one stop solution to build your recommendation models, train them and, deploy them in a privacy prese

NimbleEdge 131 Jan 02, 2023
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers

hierarchical-transformer-1d Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning using 🤗 transformers In Progress!! 2021.

MyungHoon Jin 7 Nov 06, 2022
NAACL2021 - COIL Contextualized Lexical Retriever

COIL Repo for our NAACL paper, COIL: Revisit Exact Lexical Match in Information Retrieval with Contextualized Inverted List. The code covers learning

Luyu Gao 108 Dec 31, 2022
Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP.

Hire-Wave-MLP.pytorch Implementation of Hire-MLP: Vision MLP via Hierarchical Rearrangement and An Image Patch is a Wave: Phase-Aware Vision MLP Resul

Nevermore 29 Oct 28, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Jetson Nano-based smart camera system that measures crowd face mask usage in real-time.

MaskCam MaskCam is a prototype reference design for a Jetson Nano-based smart camera system that measures crowd face mask usage in real-time, with all

BDTI 212 Dec 29, 2022
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
FuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space OptimizationFuseDream: Training-Free Text-to-Image Generationwith Improved CLIP+GAN Space Optimization

FuseDream This repo contains code for our paper (paper link): FuseDream: Training-Free Text-to-Image Generation with Improved CLIP+GAN Space Optimizat

XCL 191 Dec 31, 2022
Code for Mining the Benefits of Two-stage and One-stage HOI Detection

Status: Archive (code is provided as-is, no updates expected) PPO-EWMA [Paper] This is code for training agents using PPO-EWMA and PPG-EWMA, introduce

OpenAI 33 Dec 15, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
Creating predictive checklists from data using integer programming.

Learning Optimal Predictive Checklists A Python package to learn simple predictive checklists from data subject to customizable constraints. For more

Healthy ML 5 Apr 19, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
TriMap: Large-scale Dimensionality Reduction Using Triplets

TriMap TriMap is a dimensionality reduction method that uses triplet constraints to form a low-dimensional embedding of a set of points. The triplet c

Ehsan Amid 235 Dec 24, 2022
Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transformers to Guarantee TopologyPreservation in Segmentations"

TEDS-Net Overview of architecture and implementation of TEDS-Net, as described in MICCAI 2021: "TEDS-Net: Enforcing Diffeomorphisms in Spatial Transfo

Madeleine K Wyburd 14 Jan 04, 2023
Official PyTorch implementation for "Low Precision Decentralized Distributed Training with Heterogenous Data"

Low Precision Decentralized Training with Heterogenous Data Official PyTorch implementation for "Low Precision Decentralized Distributed Training with

Aparna Aketi 0 Nov 23, 2021
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Reporting and Visualization for Hazardous Events

Reporting and Visualization for Hazardous Events

Jv Kyle Eclarin 2 Oct 03, 2021