Deploy recommendation engines with Edge Computing

Overview

License Activity Chat on Discord

RecoEdge: Bringing Recommendations to the Edge

A one stop solution to build your recommendation models, train them and, deploy them in a privacy preserving manner-- right on the users' devices.

RecoEdge integrate the phenomenal works by OpenMined and FedML to easily explore new federated learning algorithms and deploy them into production.

The steps to building an awesome recommendation system:

  1. 🔩 Standard ML training: Pick up any ML model and benchmark it using BaseTrainer
  2. 🎮 Federated Learning Simulation: Once you are satisfied with your model, explore a host of FL algorithms with FederatedWorker
  3. 🏭 Industrial Deployment: After all the testing and simulation, deploy easily using PySyft from OpenMined
  4. 🚀 Edge Computing: Integrate with NimbleEdge to improve FL training times by over 100x.

QuickStart

Let's train Facebook AI's DLRM on the edge. DLRM has been a standard baseline for all neural network based recommendation models.

Clone this repo and change the argument datafile in configs/dlrm.yml to the above path.

git clone https://github.com/NimbleEdge/RecoEdge
model :
  name : 'dlrm'
  ...
  preproc :
    datafile : "<Path to Criteo>/criteo/train.txt"
 

Install the dependencies with conda or pip

conda env create --name recoedge --file environment.yml
conda activate recoedge

Run data preprocessing with preprocess_data and supply the config file. You should be able to generate per-day split from the entire dataset as well a processed data file

python preprocess_data.py --config configs/dlrm.yml --logdir $HOME/logs/kaggle_criteo/exp_1

Begin Training

python train.py --config configs/dlrm.yml --logdir $HOME/logs/kaggle_criteo/exp_3 --num_eval_batches 1000 --devices 0

Run tensorboard to view training loss and validation metrics at localhost:8888

tensorboard --logdir $HOME/logs/kaggle_criteo --port 8888

Federated Training

This section is still work in progress. Reach out to us directly if you need help with FL deployment

Now we will simulate DLRM in federated setting. Create data split to mimic your users. We use Drichlet sampling for creating non-IID datasets for the model.


Adjust the parameters for distributed training like MPI in the config file

communications:
  gpu_map:
    host1: [0, 2]
    host2: [1, 0, 1]
    host3: [1, 1, 0, 1]
    host4: [0, 1, 0, 0, 0, 1, 0, 2]

Implement your own federated learning algorithm. In the demo we are using Federated Averaging. You just need to sub-class FederatedWorker and implement run() method.

@registry.load('fl_algo', 'fed_avg')
class FedAvgWorker(FederatedWorker):
    def __init__(self, ...):
        super().__init__(...)

    async def run(self):
        '''
            `Run` function updates the local model. 
            Implement this method to determine how the roles interact with each other to determine the final updated model.
            For example a worker which has both the `aggregator` and `trainer` roles might first train locally then run discounted `aggregate()` to get the fianl update model 


            In the following example,
            1. Aggregator requests models from the trainers before aggregating and updating its model.
            2. Trainer responds to aggregators' requests after updating its own model by local training.

            Since standard FL requires force updates from central entity before each cycle, trainers always start with global model/aggregator's model 

        '''
        assert role in self.roles, InvalidStateError("unknown role for worker")

        if role == 'aggregator':
            neighbours = await self.request_models_suspendable(self.sample_neighbours())
            weighted_params = self.aggregate(neighbours)
            self.update_model(weighted_params)
        elif role == 'trainer':
            # central server in this case
            aggregators = list(self.out_neighbours.values())
            global_models = await self.request_models_suspendable(aggregators)
            self.update_model(global_models[0])
            await self.train(model_dir=self.persistent_storage)
        self.round_idx += 1

    # Your aggregation strategy
    def aggregate(self, neighbour_ids):
        model_list = [
            (self.in_neighbours[id].sample_num, self.in_neighbours[id].model)
            for id in neighbour_ids
        ]
        (num0, averaged_params) = model_list[0]
        for k in averaged_params.keys():
            for i in range(0, len(model_list)):
                local_sample_number, local_model_params = model_list[i]
                w = local_sample_number / training_num
                if i == 0:
                    averaged_params[k] = local_model_params[k] * w
                else:
                    averaged_params[k] += local_model_params[k] * w

        return averaged_params

    # Your sampling strategy
    def sample_neighbours(self, round_idx, client_num_per_round):
        num_neighbours = len(self.in_neighbours)
        if num_neighbours == client_num_per_round:
            selected_neighbours = [
                neighbour for neighbour in self.in_neighbours]
        else:
            with RandomContext(round_idx):
                selected_neighbours = np.random.choice(
                    self.in_neighbours, min(client_num_per_round, num_neighbours), replace=False)
        logging.info("worker_indexes = %s" % str(selected_neighbours))
        return selected_neighbours

Begin FL simulation by

mpirun -np 20 python -m mpi4py.futures train_fl.py --num_workers 1000.

Deploy with PySyft

Customization

Training Configuration

There are two ways to adjust training hyper-parameters:

  • Set values in config/*.yml persistent settings which are necessary for reproducibility eg randomization seed
  • Pass them as CLI argument Good for non-persistent and dynamic settings like gpu device

In case of conflict, CLI argument supercedes config file parameter. For further reference, check out training config flags

Model Architecture

Adjusting DLRM model params

Any parameter needed to instantiate the pytorch module can be supplied by simply creating a key-value pair in the config file.

For example DLRM requires arch_feature_emb_size, arch_mlp_bot, etc

model: 
  name : 'dlrm'
  arch_sparse_feature_size : 16
  arch_mlp_bot : [13, 512, 256, 64]
  arch_mlp_top : [367, 256, 1]
  arch_interaction_op : "dot"
  arch_interaction_itself : False
  sigmoid_bot : "relu"
  sigmoid_top : "sigmoid"
  loss_function: "mse"

Adding new models

Model architecture can only be changed via configs/*.yml files. Every model declaration is tagged with an appropriate name and loaded into registry.

@registry.load('model','<model_name>')
class My_Model(torch.nn.Module):
    def __init__(num):
        ... 

You can define your own modules and add them in the fedrec/modules. Finally set the name flag of model tag in config file

model : 
  name : "<model name>"

Contribute

  1. Star, fork, and clone the repo.
  2. Do your work.
  3. Push to your fork.
  4. Submit a PR to NimbleEdge/RecoEdge

We welcome you to the Discord for queries related to the library and contribution in general.

Owner
NimbleEdge
An edge computing solution for all your needs
NimbleEdge
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
An AI Assistant More Than a Toolkit

tymon An AI Assistant More Than a Toolkit The reason for creating framework tymon is simple. making AI more like an assistant, helping us to complete

TymonXie 46 Oct 24, 2022
Probabilistic Tensor Decomposition of Neural Population Spiking Activity

Probabilistic Tensor Decomposition of Neural Population Spiking Activity Matlab (recommended) and Python (in developement) implementations of Soulat e

Hugo Soulat 6 Nov 30, 2022
Intent parsing and slot filling in PyTorch with seq2seq + attention

PyTorch Seq2Seq Intent Parsing Reframing intent parsing as a human - machine translation task. Work in progress successor to torch-seq2seq-intent-pars

Sean Robertson 160 Jan 07, 2023
PyTorch Implementation of Vector Quantized Variational AutoEncoders.

Pytorch implementation of VQVAE. This paper combines 2 tricks: Vector Quantization (check out this amazing blog for better understanding.) Straight-Th

Vrushank Changawala 2 Oct 06, 2021
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Zach 101 Jan 04, 2023
CarND-LaneLines-P1 - Lane Finding Project for Self-Driving Car ND

Finding Lane Lines on the Road Overview When we drive, we use our eyes to decide where to go. The lines on the road that show us where the lanes are a

Udacity 769 Dec 27, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022
Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

Jipeng Zhang 66 Nov 23, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Learning a mapping from images to psychological similarity spaces with neural networks.

LearningPsychologicalSpaces v0.1: v1.1: v1.2: v1.3: v1.4: v1.5: The code in this repository explores learning a mapping from images to psychological s

Lucas Bechberger 8 Dec 12, 2022
Code release for paper: The Boombox: Visual Reconstruction from Acoustic Vibrations

The Boombox: Visual Reconstruction from Acoustic Vibrations Boyuan Chen, Mia Chiquier, Hod Lipson, Carl Vondrick Columbia University Project Website |

Boyuan Chen 12 Nov 30, 2022
a grammar based feedback fuzzer

Nautilus NOTE: THIS IS AN OUTDATE REPOSITORY, THE CURRENT RELEASE IS AVAILABLE HERE. THIS REPO ONLY SERVES AS A REFERENCE FOR THE PAPER Nautilus is a

Chair for Sys­tems Se­cu­ri­ty 158 Dec 28, 2022
A smaller subset of 10 easily classified classes from Imagenet, and a little more French

Imagenette 🎶 Imagenette, gentille imagenette, Imagenette, je te plumerai. 🎶 (Imagenette theme song thanks to Samuel Finlayson) NB: Versions of Image

fast.ai 718 Jan 01, 2023
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Gluon CV Toolkit

Gluon CV Toolkit | Installation | Documentation | Tutorials | GluonCV provides implementations of the state-of-the-art (SOTA) deep learning models in

Distributed (Deep) Machine Learning Community 5.4k Jan 06, 2023
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022