Deploy recommendation engines with Edge Computing

Overview

License Activity Chat on Discord

RecoEdge: Bringing Recommendations to the Edge

A one stop solution to build your recommendation models, train them and, deploy them in a privacy preserving manner-- right on the users' devices.

RecoEdge integrate the phenomenal works by OpenMined and FedML to easily explore new federated learning algorithms and deploy them into production.

The steps to building an awesome recommendation system:

  1. 🔩 Standard ML training: Pick up any ML model and benchmark it using BaseTrainer
  2. 🎮 Federated Learning Simulation: Once you are satisfied with your model, explore a host of FL algorithms with FederatedWorker
  3. 🏭 Industrial Deployment: After all the testing and simulation, deploy easily using PySyft from OpenMined
  4. 🚀 Edge Computing: Integrate with NimbleEdge to improve FL training times by over 100x.

QuickStart

Let's train Facebook AI's DLRM on the edge. DLRM has been a standard baseline for all neural network based recommendation models.

Clone this repo and change the argument datafile in configs/dlrm.yml to the above path.

git clone https://github.com/NimbleEdge/RecoEdge
model :
  name : 'dlrm'
  ...
  preproc :
    datafile : "<Path to Criteo>/criteo/train.txt"
 

Install the dependencies with conda or pip

conda env create --name recoedge --file environment.yml
conda activate recoedge

Run data preprocessing with preprocess_data and supply the config file. You should be able to generate per-day split from the entire dataset as well a processed data file

python preprocess_data.py --config configs/dlrm.yml --logdir $HOME/logs/kaggle_criteo/exp_1

Begin Training

python train.py --config configs/dlrm.yml --logdir $HOME/logs/kaggle_criteo/exp_3 --num_eval_batches 1000 --devices 0

Run tensorboard to view training loss and validation metrics at localhost:8888

tensorboard --logdir $HOME/logs/kaggle_criteo --port 8888

Federated Training

This section is still work in progress. Reach out to us directly if you need help with FL deployment

Now we will simulate DLRM in federated setting. Create data split to mimic your users. We use Drichlet sampling for creating non-IID datasets for the model.


Adjust the parameters for distributed training like MPI in the config file

communications:
  gpu_map:
    host1: [0, 2]
    host2: [1, 0, 1]
    host3: [1, 1, 0, 1]
    host4: [0, 1, 0, 0, 0, 1, 0, 2]

Implement your own federated learning algorithm. In the demo we are using Federated Averaging. You just need to sub-class FederatedWorker and implement run() method.

@registry.load('fl_algo', 'fed_avg')
class FedAvgWorker(FederatedWorker):
    def __init__(self, ...):
        super().__init__(...)

    async def run(self):
        '''
            `Run` function updates the local model. 
            Implement this method to determine how the roles interact with each other to determine the final updated model.
            For example a worker which has both the `aggregator` and `trainer` roles might first train locally then run discounted `aggregate()` to get the fianl update model 


            In the following example,
            1. Aggregator requests models from the trainers before aggregating and updating its model.
            2. Trainer responds to aggregators' requests after updating its own model by local training.

            Since standard FL requires force updates from central entity before each cycle, trainers always start with global model/aggregator's model 

        '''
        assert role in self.roles, InvalidStateError("unknown role for worker")

        if role == 'aggregator':
            neighbours = await self.request_models_suspendable(self.sample_neighbours())
            weighted_params = self.aggregate(neighbours)
            self.update_model(weighted_params)
        elif role == 'trainer':
            # central server in this case
            aggregators = list(self.out_neighbours.values())
            global_models = await self.request_models_suspendable(aggregators)
            self.update_model(global_models[0])
            await self.train(model_dir=self.persistent_storage)
        self.round_idx += 1

    # Your aggregation strategy
    def aggregate(self, neighbour_ids):
        model_list = [
            (self.in_neighbours[id].sample_num, self.in_neighbours[id].model)
            for id in neighbour_ids
        ]
        (num0, averaged_params) = model_list[0]
        for k in averaged_params.keys():
            for i in range(0, len(model_list)):
                local_sample_number, local_model_params = model_list[i]
                w = local_sample_number / training_num
                if i == 0:
                    averaged_params[k] = local_model_params[k] * w
                else:
                    averaged_params[k] += local_model_params[k] * w

        return averaged_params

    # Your sampling strategy
    def sample_neighbours(self, round_idx, client_num_per_round):
        num_neighbours = len(self.in_neighbours)
        if num_neighbours == client_num_per_round:
            selected_neighbours = [
                neighbour for neighbour in self.in_neighbours]
        else:
            with RandomContext(round_idx):
                selected_neighbours = np.random.choice(
                    self.in_neighbours, min(client_num_per_round, num_neighbours), replace=False)
        logging.info("worker_indexes = %s" % str(selected_neighbours))
        return selected_neighbours

Begin FL simulation by

mpirun -np 20 python -m mpi4py.futures train_fl.py --num_workers 1000.

Deploy with PySyft

Customization

Training Configuration

There are two ways to adjust training hyper-parameters:

  • Set values in config/*.yml persistent settings which are necessary for reproducibility eg randomization seed
  • Pass them as CLI argument Good for non-persistent and dynamic settings like gpu device

In case of conflict, CLI argument supercedes config file parameter. For further reference, check out training config flags

Model Architecture

Adjusting DLRM model params

Any parameter needed to instantiate the pytorch module can be supplied by simply creating a key-value pair in the config file.

For example DLRM requires arch_feature_emb_size, arch_mlp_bot, etc

model: 
  name : 'dlrm'
  arch_sparse_feature_size : 16
  arch_mlp_bot : [13, 512, 256, 64]
  arch_mlp_top : [367, 256, 1]
  arch_interaction_op : "dot"
  arch_interaction_itself : False
  sigmoid_bot : "relu"
  sigmoid_top : "sigmoid"
  loss_function: "mse"

Adding new models

Model architecture can only be changed via configs/*.yml files. Every model declaration is tagged with an appropriate name and loaded into registry.

@registry.load('model','<model_name>')
class My_Model(torch.nn.Module):
    def __init__(num):
        ... 

You can define your own modules and add them in the fedrec/modules. Finally set the name flag of model tag in config file

model : 
  name : "<model name>"

Contribute

  1. Star, fork, and clone the repo.
  2. Do your work.
  3. Push to your fork.
  4. Submit a PR to NimbleEdge/RecoEdge

We welcome you to the Discord for queries related to the library and contribution in general.

Owner
NimbleEdge
An edge computing solution for all your needs
NimbleEdge
Code for our paper Aspect Sentiment Quad Prediction as Paraphrase Generation in EMNLP 2021.

Aspect Sentiment Quad Prediction (ASQP) This repo contains the annotated data and code for our paper Aspect Sentiment Quad Prediction as Paraphrase Ge

Isaac 39 Dec 11, 2022
NBEATSx: Neural basis expansion analysis with exogenous variables

NBEATSx: Neural basis expansion analysis with exogenous variables We extend the NBEATS model to incorporate exogenous factors. The resulting method, c

Cristian Challu 100 Dec 31, 2022
A New Approach to Overgenerating and Scoring Abstractive Summaries

We provide the source code for the paper "A New Approach to Overgenerating and Scoring Abstractive Summaries" accepted at NAACL'21. If you find the code useful, please cite the following paper.

Kaiqiang Song 4 Apr 03, 2022
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
A Python multilingual toolkit for Sentiment Analysis and Social NLP tasks

pysentimiento: A Python toolkit for Sentiment Analysis and Social NLP tasks A Transformer-based library for SocialNLP classification tasks. Currently

298 Jan 07, 2023
Optimizaciones incrementales al problema N-Body con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámbito de HPC.

Python HPC Optimizaciones incrementales de N-Body (all-pairs) con el fin de evaluar y comparar las prestaciones de los traductores de Python en el ámb

Andrés Milla 12 Aug 04, 2022
Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch! Now, Rearrange and Reduce in einops.layers.jittor are support!!

130 Jan 08, 2023
[CVPR2021 Oral] End-to-End Video Instance Segmentation with Transformers

VisTR: End-to-End Video Instance Segmentation with Transformers This is the official implementation of the VisTR paper: Installation We provide instru

Yuqing Wang 687 Jan 07, 2023
PyTorch implementation of our CVPR2021 (oral) paper "Prototype Augmentation and Self-Supervision for Incremental Learning"

PASS - Official PyTorch Implementation [CVPR2021 Oral] Prototype Augmentation and Self-Supervision for Incremental Learning Fei Zhu, Xu-Yao Zhang, Chu

67 Dec 27, 2022
OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021)

OREO: Object-Aware Regularization for Addressing Causal Confusion in Imitation Learning (NeurIPS 2021) Video demo We here provide a video demo from co

20 Nov 25, 2022
Code samples for my book "Neural Networks and Deep Learning"

Code samples for "Neural Networks and Deep Learning" This repository contains code samples for my book on "Neural Networks and Deep Learning". The cod

Michael Nielsen 13.9k Dec 26, 2022
All-in-one Docker container that allows a user to explore Nautobot in a lab environment.

Nautobot Lab This container is not for production use! Nautobot Lab is an all-in-one Docker container that allows a user to quickly get an instance of

Nautobot 29 Sep 16, 2022
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
Collection of common code that's shared among different research projects in FAIR computer vision team.

fvcore fvcore is a light-weight core library that provides the most common and essential functionality shared in various computer vision frameworks de

Meta Research 1.5k Jan 07, 2023
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
Official repository of the paper "GPR1200: A Benchmark for General-PurposeContent-Based Image Retrieval"

GPR1200 Dataset GPR1200: A Benchmark for General-Purpose Content-Based Image Retrieval (ArXiv) Konstantin Schall, Kai Uwe Barthel, Nico Hezel, Klaus J

Visual Computing Group 16 Nov 21, 2022
Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

LUPerson-NL Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL) The repository is for our CVPR2022 paper Large-Scale

43 Dec 26, 2022