Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

Overview

pytorch-AdaIN

This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Huang+, ICCV2017]. I'm really grateful to the original implementation in Torch by the authors, which is very useful.

Results

Requirements

Please install requirements by pip install -r requirements.txt

  • Python 3.5+
  • PyTorch 0.4+
  • TorchVision
  • Pillow

(optional, for training)

  • tqdm
  • TensorboardX

Usage

Download models

Download decoder.pth/vgg_normalized.pth and put them under models/.

Test

Use --content and --style to provide the respective path to the content and style image.

CUDA_VISIBLE_DEVICES=
   
     python test.py --content input/content/cornell.jpg --style input/style/woman_with_hat_matisse.jpg

   

You can also run the code on directories of content and style images using --content_dir and --style_dir. It will save every possible combination of content and styles to the output directory.

CUDA_VISIBLE_DEVICES=
   
     python test.py --content_dir input/content --style_dir input/style

   

This is an example of mixing four styles by specifying --style and --style_interpolation_weights option.

CUDA_VISIBLE_DEVICES=
   
     python test.py --content input/content/avril.jpg --style input/style/picasso_self_portrait.jpg,input/style/impronte_d_artista.jpg,input/style/trial.jpg,input/style/antimonocromatismo.jpg --style_interpolation_weights 1,1,1,1 --content_size 512 --style_size 512 --crop

   

Some other options:

  • --content_size: New (minimum) size for the content image. Keeping the original size if set to 0.
  • --style_size: New (minimum) size for the content image. Keeping the original size if set to 0.
  • --alpha: Adjust the degree of stylization. It should be a value between 0.0 and 1.0 (default).
  • --preserve_color: Preserve the color of the content image.

Train

Use --content_dir and --style_dir to provide the respective directory to the content and style images.

CUDA_VISIBLE_DEVICES=
   
     python train.py --content_dir 
    
      --style_dir 
     

     
    
   

For more details and parameters, please refer to --help option.

I share the model trained by this code here

References

  • [1]: X. Huang and S. Belongie. "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization.", in ICCV, 2017.
  • [2]: Original implementation in Torch
Owner
Naoto Inoue
Research Scientist at CyberAgent Inc. AILab
Naoto Inoue
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022
Torch implementation of "Enhanced Deep Residual Networks for Single Image Super-Resolution"

NTIRE2017 Super-resolution Challenge: SNU_CVLab Introduction This is our project repository for CVPR 2017 Workshop (2nd NTIRE). We, Team SNU_CVLab, (B

Bee Lim 625 Dec 30, 2022
Visyerres sgdf woob - Modules Woob pour l'intranet et autres sites Scouts et Guides de France

Vis'Yerres SGDF - Modules Woob Vous avez le sentiment que l'intranet des Scouts

Thomas Touhey (pas un pseudonyme) 3 Dec 24, 2022
A PyTorch implementation of the Relational Graph Convolutional Network (RGCN).

Torch-RGCN Torch-RGCN is a PyTorch implementation of the RGCN, originally proposed by Schlichtkrull et al. in Modeling Relational Data with Graph Conv

Thiviyan Singam 66 Nov 30, 2022
Code for the CVPR2021 workshop paper "Noise Conditional Flow Model for Learning the Super-Resolution Space"

NCSR: Noise Conditional Flow Model for Learning the Super-Resolution Space Official NCSR training PyTorch Code for the CVPR2021 workshop paper "Noise

57 Oct 03, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control

FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control by Dimitri von Rütte, Luca Biggio, Yannic Kilcher, Thomas Hofmann FIGARO: Generat

Dimitri 83 Jan 07, 2023
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
This is an open solution to the Home Credit Default Risk challenge 🏡

Home Credit Default Risk: Open Solution This is an open solution to the Home Credit Default Risk challenge 🏡 . More competitions 🎇 Check collection

minerva.ml 427 Dec 27, 2022
Streamlit App For Product Analysis - Streamlit App For Product Analysis

Streamlit_App_For_Product_Analysis Здравствуйте! Перед вами дашборд, позволяющий

Grigory Sirotkin 1 Jan 10, 2022
Official implementation of the PICASO: Permutation-Invariant Cascaded Attentional Set Operator

PICASO Official PyTorch implemetation for the paper PICASO:Permutation-Invariant Cascaded Attentive Set Operator. Requirements Python 3 torch = 1.0 n

Samira Zare 0 Dec 23, 2021
MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc.

MobileNetV1-V2,MobileNeXt,GhostNet,AdderNet,ShuffleNetV1-V2,Mobile+ViT etc. ⭐⭐⭐⭐⭐

568 Jan 04, 2023
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
Implementation of CVPR'2022:Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors

Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors (CVPR 2022) Personal Web Pages | Paper | Project Page This repository contains

151 Dec 26, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a building extraction plugin of QGIS based on PaddlePaddle. TODO Extract building on 512x512 remote sensing images. Extract build

Yizhou Chen 11 Sep 26, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
Implicit Deep Adaptive Design (iDAD)

Implicit Deep Adaptive Design (iDAD) This code supports the NeurIPS paper 'Implicit Deep Adaptive Design: Policy-Based Experimental Design without Lik

Desi 12 Aug 14, 2022