A simple software for capturing human body movements using the Kinect camera.

Overview

KinectMotionCapture

Build Status DOI

A simple software for capturing human body movements using the Kinect camera. The software can seamlessly save joints and bones positions for further analysis.

Features

  • Compliance with one Kinect camera connected.
  • Tracking up to two people captured on the video stream.
  • Indicating by color which joints and bones are fully tracked or inferred.
  • Recording body movements of one person. Bones and joints positions data is saved to files.
  • Adjusting joint filtering options.
  • Saving screenshots of current video stream.

The application recognizes only joints and bones that were fully tracked or inferred by the Kinect camera. Tracked joints and bones with both of their joints tracked are indicated by green color, inferred joints and bones with only one of their joints tracked are indicated by yellow color, and bones with both of their joint inferred are indicated by red color.

Although being capable of tracking up to two skeletons on the video stream, the application saves all positions as if there was only one skeleton source. Therefore, if more than one skeleton is tracked, the user should indicate the main body to be captured by using the Set body function.

For a general overview of the Kinect skeletal tracking system please refer to [1].

Functions

Set body

The Set body function allows to choose the body to be captured (and its position saved) from all other bodies present on the video stream. To use this feature, the person to be captured must stand the closest to the camera, and then the Set body button must be clicked.

Kinect smoothing parameters

The skeletal tracking joint information can be adjusted across different frames to minimize jittering and stabilize the joint positions over time. This can be done by adjusting the smoothing parameters. A comprehensive description of these options can be found at [1].

Recording

Body movement can be recorded by clicking the Start recoding button. All data recorded is saved as comma-separated files in “data” folder in the root directory of the application. For the data file to be saved the Stop recording button must be clicked afterwards. Joints positions are saved as files named “<>-joint-<>.csv”. The files include data columns which contain timestamp of a measurement (timestamp), joint x position (x), joint y position (y), joint z position (z), and coordinate type (coord_type), which indicates whether the joint was fully tracked (1) or inferred (2). Bones positions are saved as files named “<>-bone-<>-<>.csv”. The files include data columns which contain timestamp of a measurement (timestamp), bone absolute rotation matrix (abs_m11 to abs_m44), bone absolute orientation in quaternion form (abs_x, abs_y, abs_z, and abs_w), bone hierarchical rotation matrix (h_m11 to h_m44), bone hierarchical orientation in quaternion form (h_x, h_y, h_z, and h_w), and coordinate type (coord_type), which indicates whether both joints of the bone were fully tracked (1), both were inferred (2) or only one of them was tracked (3).

Requirements

  • .NET Framework 4.5.2
  • Kinect for Windows SDK v1.8

References

[1] https://msdn.microsoft.com/en-us/library/hh973074.aspx

You might also like...
 SMPL-X: A new joint 3D model of the human body, face and hands together
SMPL-X: A new joint 3D model of the human body, face and hands together

SMPL-X: A new joint 3D model of the human body, face and hands together [Paper Page] [Paper] [Supp. Mat.] Table of Contents License Description News I

Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Camera-caps - Examine the camera capabilities for V4l2 cameras
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

 PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images
CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Detection in Remote Sensing Images

CFC-Net This project hosts the official implementation for the paper: CFC-Net: A Critical Feature Capturing Network for Arbitrary-Oriented Object Dete

Towards Multi-Camera 3D Human Pose Estimation in Wild Environment
Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

PanopticStudio Toolbox This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data. Note: Sep-21-2020: Curre

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.
Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Python scripts for performing 3D human pose estimation using the Mobile Human Pose model in ONNX.

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks

Self-Correcting Quantum Many-Body Control using Reinforcement Learning with Tensor Networks This repository contains the code and data for the corresp

[CVPR2021] UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicles

UAV-Human Official repository for CVPR2021: UAV-Human: A Large Benchmark for Human Behavior Understanding with Unmanned Aerial Vehicle Paper arXiv Res

Releases(v1.1)
Owner
Aleksander Palkowski
Aleksander Palkowski
Deep learning with dynamic computation graphs in TensorFlow

TensorFlow Fold TensorFlow Fold is a library for creating TensorFlow models that consume structured data, where the structure of the computation graph

1.8k Dec 28, 2022
Pytorch re-implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text Recognition (CVPR 2022)

SwinTextSpotter This is the pytorch implementation of Paper: SwinTextSpotter: Scene Text Spotting via Better Synergy between Text Detection and Text R

mxin262 183 Jan 03, 2023
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
disentanglement_lib is an open-source library for research on learning disentangled representations.

disentanglement_lib disentanglement_lib is an open-source library for research on learning disentangled representation. It supports a variety of diffe

Google Research 1.3k Dec 28, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

John Ingraham 159 Dec 15, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment

PENecro This project is based on "Enabling dynamic analysis of Legacy Embedded Systems in full emulated environment", published on hardwear.io USA 202

Ta-Lun Yen 10 May 17, 2022
Neuron Merging: Compensating for Pruned Neurons (NeurIPS 2020)

Neuron Merging: Compensating for Pruned Neurons Pytorch implementation of Neuron Merging: Compensating for Pruned Neurons, accepted at 34th Conference

Woojeong Kim 33 Dec 30, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
RoboDesk A Multi-Task Reinforcement Learning Benchmark

RoboDesk A Multi-Task Reinforcement Learning Benchmark If you find this open source release useful, please reference in your paper: @misc{kannan2021ro

Google Research 66 Oct 07, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
GraPE is a Rust/Python library for high-performance Graph Processing and Embedding.

GraPE GraPE (Graph Processing and Embedding) is a fast graph processing and embedding library, designed to scale with big graphs and to run on both of

AnacletoLab 194 Dec 29, 2022
Faune proche - Retrieval of Faune-France data near a google maps location

faune_proche Récupération des données de Faune-France près d'un lieu google maps

4 Feb 15, 2022
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On

UPMT Generate fine-tuning samples & Fine-tuning the model & Generate samples by transferring Note On See main.py as an example: from model import PopM

7 Sep 01, 2022
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022