More than a hundred strange attractors

Related tags

Deep Learningdysts
Overview

dysts

Analyze more than a hundred chaotic systems.

An embedding of all chaotic systems in the collection

Basic Usage

Import a model and run a simulation with default initial conditions and parameter values

from dysts.flows import Lorenz

model = Lorenz()
sol = model.make_trajectory(1000)
# plt.plot(sol[:, 0], sol[:, 1])

Modify a model's parameter values and re-integrate

model = Lorenz()
model.gamma = 1
model.ic = [0, 0, 0.2]
sol = model.make_trajectory(1000)
# plt.plot(sol[:, 0], sol[:, 1])

Load a precomputed trajectory for the model

eq = Lorenz()
sol = eq.load_trajectory(subsets="test", noise=False, granularity="fine")
# plt.plot(sol[:, 0], sol[:, 1])

Integrate new trajectories from all 131 chaotic systems with a custom granularity

from dysts.base import make_trajectory_ensemble

all_out = make_trajectory_ensemble(100, resample=True, pts_per_period=75)

Load a precomputed collection of time series from all 131 chaotic systems

from dysts.datasets import load_dataset

data = load_dataset(subsets="train", data_format="numpy", standardize=True)

Additional functionality and examples can be found in the demonstrations notebook.. The full API documentation can be found here.

Reference

For additional details, please see the preprint. If using this code for published work, please consider citing the paper.

William Gilpin. "Chaos as an interpretable benchmark for forecasting and data-driven modelling" Advances in Neural Information Processing Systems (NeurIPS) 2021 https://arxiv.org/abs/2110.05266

Installation

Install from PyPI

pip install dysts

To obtain the latest version, including new features and bug fixes, download and install the project repository directly from GitHub

git clone https://github.com/williamgilpin/dysts
cd dysts
pip install -I . 

Test that everything is working

python -m unittest

Alternatively, to use this as a regular package without downloading the full repository, install directly from GitHub

pip install git+git://github.com/williamgilpin/dysts

The key dependencies are

  • Python 3+
  • numpy
  • scipy
  • pandas
  • sdeint (optional, but required for stochastic dynamics)
  • numba (optional, but speeds up generation of trajectories)

These additional optional dependencies are needed to reproduce some portions of this repository, such as benchmarking experiments and estimation of invariant properties of each dynamical system:

  • nolds (used for calculating the correlation dimension)
  • darts (used for forecasting benchmarks)
  • sktime (used for classification benchmarks)
  • tsfresh (used for statistical quantity extraction)
  • pytorch (used for neural network benchmarks)

Contributing

New systems. If you know of any systems should be included, please feel free to submit an issue or pull request. The biggest bottleneck when adding new models is a lack of known parameter values and initial conditions, and so please provide a reference or code that contains all parameter values necessary to reproduce the claimed dynamics. Because there are an infinite number of chaotic systems, we currently are only including systems that have appeared in published work.

Development and Maintainence. We are very grateful for any suggestions or contributions. See the to-do list below for some of the ongoing work.

Benchmarks

The benchmarks reported in our preprint can be found in benchmarks. An overview of the contents of the directory can be found in BENCHMARKS.md, while individual task areas are summarized in corresponding Jupyter Notebooks within the top level of the directory.

Contents

  • Code to generate benchmark forecasting and training experiments are included in benchmarks
  • Pre-computed time series with training and test partitions are included in data
  • The raw definitions metadata for all chaotic systems are included in the database file chaotic_attractors. The Python implementations of differential equations can be found in the flows module

Implementation Notes

  • Currently there are 131 continuous time models, including several delay diffential equations. There is also a separate module with 10 discrete maps, which is currently being expanded.
  • The right hand side of each dynamical equation is compiled using numba, wherever possible. Ensembles of trajectories are vectorized where needed.
  • Attractor names, default parameter values, references, and other metadata are stored in parseable JSON database files. Parameter values are based on standard or published values, and default initial conditions were generated by running each model until the moments of the autocorrelation function all become stationary.
  • The default integration step is stored in each continuous-time model's dt field. This integration timestep was chosen based on the highest significant frequency observed in the power spectrum, with significance being determined relative to random phase surrogates. The period field contains the timescale associated with the dominant frequency in each system's power spectrum. When using the model.make_trajectory() method with the optional setting resample=True, integration is performed at the default dt. The integrated trajectory is then resampled based on the period. The resulting trajectories will have have consistant dominant timescales across models, despite having different integration timesteps.

Acknowledgements

  • Two existing collections of named systems can be found on the webpages of Jürgen Meier and J. C. Sprott. The current version of dysts contains all systems from both collections.
  • Several of the analysis routines (such as calculation of the correlation dimension) use the library nolds. If re-using the fractal dimension code that depends on nolds, please be sure to credit that library and heed its license. The Lyapunov exponent calculation is based on the QR factorization approach used by Wolf et al 1985 and Eckmann et al 1986, with implementation details adapted from conventions in the Julia library DynamicalSystems.jl

Ethics & Reporting

Dataset datasheets and metadata are reported using the dataset documentation guidelines described in Gebru et al 2018; please see our preprint for a full dataset datasheet and other information. We note that all datasets included here are mathematical in nature, and do not contain human or clinical observations. If any users become aware of unintended harms that may arise due to the use of this data, we encourage reporting them by submitting an issue on this repository.

Development to-do list

A partial list of potential improvements in future versions

  • Speed up the delay equation implementation
    • We need to roll our own implementation of DDE23 in the utils module.
  • Improve calculations of Lyapunov exponents for delay systems
  • Implement multivariate multiscale entropy and re-calculate for all attractors
  • Add a method for parallel integrating multiple systems at once, based on a list of names and a set of shared settings
    • Can use multiprocessing for a few systems, but greater speedups might be possible by compiling all right hand sides into a single function acting on a large vector.
    • Can also use this same utility to integrate multiple initial conditions for the same model
  • Add a separate jacobian database file, and add an attribute that can be used to check if an analytical one exists. This will speed up numerical integration, as well as potentially aid in calculating Lyapunov exponents.
  • Align the initial phases, potentially by picking default starting initial conditions that lie on the attractor, but which are as close as possible to the origin
  • Expand and finalize the discrete dysts.maps module
    • Maps are deterministic but not differentiable, and so not all analysis methods will work on them. Will probably need a decorator to declare whether utilities work on flows, maps, or both
  • Switch stochastic integration to a newer package, like torchsde or sdepy
Owner
William Gilpin
Physics researcher at Harvard. Soon @GilpinLab at UT Austin
William Gilpin
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
ConvMixer unofficial implementation

ConvMixer ConvMixer 非官方实现 pytorch 版本已经实现。 nets 是重构版本 ,test 是官方代码 感兴趣小伙伴可以对照看一下。 keras 已经实现 tf2.x 中 是tensorflow 2 版本 gelu 激活函数要求 tf=2.4 否则使用入下代码代替gelu

Jian Tengfei 8 Jul 11, 2022
Simulation of self-focusing of laser beams in condensed media

What is it? Program for scientific research, which allows to simulate the phenomenon of self-focusing of different laser beams (including Gaussian, ri

Evgeny Vasilyev 13 Dec 24, 2022
2021搜狐校园文本匹配算法大赛 分比我们低的都是帅哥队

sohu_text_matching 2021搜狐校园文本匹配算法大赛Top2:分比我们低的都是帅哥队 本repo包含了本次大赛决赛环节提交的代码文件及答辩PPT,提交的模型文件可在百度网盘获取(链接:https://pan.baidu.com/s/1T9FtwiGFZhuC8qqwXKZSNA ,

hflserdaniel 43 Oct 01, 2022
LIAO Shuiying 6 Dec 01, 2022
Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach

Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning Approach This is the implementation of traffic prediction code in DTMP based on PyTo

chenxin 1 Dec 19, 2021
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Addon and nodes for working with structural biology and molecular data in Blender.

Molecular Nodes 🧬 🔬 💻 Buy Me a Coffee to Keep Development Going! Join a Community of Blender SciVis People! What is Molecular Nodes? Molecular Node

Brady Johnston 456 Jan 08, 2023
1st place solution in CCF BDCI 2021 ULSEG challenge

1st place solution in CCF BDCI 2021 ULSEG challenge This is the source code of the 1st place solution for ultrasound image angioma segmentation task (

Chenxu Peng 30 Nov 22, 2022
ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees

ResNEsts and DenseNEsts: Block-based DNN Models with Improved Representation Guarantees This repository is the official implementation of the empirica

Kuan-Lin (Jason) Chen 2 Oct 02, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Official repository for "Intriguing Properties of Vision Transformers" (2021)

Intriguing Properties of Vision Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, & Ming-Hsuan Yang P

Muzammal Naseer 155 Dec 27, 2022
Global-Local Context Network for Person Search

Global-Local Context Network for Person Search Abstract: Person search aims to jointly localize and identify a query person from natural, uncropped im

Peng Zheng 15 Oct 17, 2022
Alex Pashevich 62 Dec 24, 2022
Data-driven reduced order modeling for nonlinear dynamical systems

SSMLearn Data-driven Reduced Order Models for Nonlinear Dynamical Systems This package perform data-driven identification of reduced order model based

Haller Group, Nonlinear Dynamics 27 Dec 13, 2022