Towards Multi-Camera 3D Human Pose Estimation in Wild Environment

Overview

PanopticStudio Toolbox

This repository has a toolbox to download, process, and visualize the Panoptic Studio (Panoptic) data.

Note:

  • Sep-21-2020: Currently our server is offline due to the power outage in the CMU Campus, and COVID-19 makes it difficult to access the server room. We will fix the issue as soon as possible. 
  • Sep-30-2020: Unfortunately, we found that our server has been broken and we are replacing it now. Please wait a couple of more weeks.
  • Oct-5-2020: Our server is back and online now!
  • May-18-2021: Currently our server is offline due to our server maintenance. Hopefully it will be back online in this week.  

Quick start guide

Follow these steps to set up a simple example:

1. Check out the codebase

git clone https://github.com/CMU-Perceptual-Computing-Lab/panoptic-toolbox
cd panoptic-toolbox

2. Download a sample data and other data

To download a dataset, named "171204_pose1_sample" in this example, run the following script.

./scripts/getData.sh 171204_pose1_sample

This bash script requires curl or wget.

This script will create a folder "./171204_pose1_sample" and download the following files.

  • 171204_pose1_sample/hdVideos/hd_00_XX.mp4 #synchronized HD video files (31 views)
  • 171204_pose1_sample/vgaVideos/KINECTNODE%d/vga_XX_XX.mp4 #synchrponized VGA video files (480 views)
  • 171204_pose1_sample/calibration_171204_pose1_sample.json #calibration files
  • 171204_pose1_sample/hdPose3d_stage1_coco19.tar #3D Body Keypoint Data (coco19 keypoint definition)
  • 171204_pose1_sample/hdFace3d.tar #3D Face Keypoint Data
  • 171204_pose1_sample/hdHand3d.tar #3D Hand Keypoint Data

Note that this sample example currently does not have VGA videos.

You can also download any other seqeunce through this script. Just use the the name of the target sequence: instead of the "171204_pose1panopticHD". r example,

./scripts/getData.sh 171204_pose1

for the full version of 171204_pose1 sequence:. You can also specify the number of videospanopticHDnt to donwload.

./scripts/getData.sh (sequenceName) (VGA_Video_Number) (HD_Video_Number)

For example, the following command will download 240 vga videos and 10 videos.

./scripts/getData.sh 171204_pose1_sample 240 10

Note that we have sorted the VGA camera order so that you download uniformly distributed view.

3. Downloading All Available Sequences

You can find the list of currently available sequences in the following link:

List of released sequences (ver1.2)

Downloading all of them (including videos) may take a long time, but downloading 3D keypoint files (body+face+hand upon their availability) should be "relatively" quick.

You can use the following script to download currently available sequences (ver 1.2):

./scripts/getDB_panopticHD_ver1_2.sh

The default setting is not downloading any videos. Feel free to change the "vgaVideoNum" and "hdVideoNum" in the script to other numbers if you also want to download videos.

You can see the example videos and other information of each sequence: in our website: Browsing dataset.

Check the 3D viewer in each sequence: page where you can visualize 3D skeletons in your web browser. For example: http://domedb.perception.cs.cmu.edu/panopticHDpose1.html

4. Extract the images & 3D keypoint data

This step requires ffmpeg.

./scripts/extractAll.sh 171204_pose1_sample

This will extract images, for example 171204_pose1_sample/hdImgs/00_00/00_00_00000000.jpg, and the corresponding 3D skeleton data, for example 171204_pose1_sample/hdPose3d_stage1_coco19/body3DScene_00000000.json.

extractAll.sh is a simple script that combines the following set of commands (you shouldn't need to run these again):

cd 171204_pose1_sample
../scripts/vgaImgsExtractor.sh # PNG files from VGA video (25 fps)
../scripts/hdImgsExtractor.sh # PNG files from HD video (29.97 fps)
tar -xf vgaPose3d_stage1.tar # Extract skeletons at VGA framerate
tar -xf hdPose3d_stage1.tar # Extract skeletons for HD
cd ..

5. Run demo programs

Python

This codes require numpy, matplotlib.

Visualizing 3D keypoints (body, face, hand):

cd python
jupyter notebook demo_3Dkeypoints_3dview.ipynb

The result should look like this.

Reprojecting 3D keypoints (body, face, hand) on a selected HD view:

cd python
jupyter notebook demo_3Dkeypoints_reprojection_hd.ipynb

The result should look like this.

This codes require numpy, matplotlib.

Visualizing 3D keypoints (body, face, hand):

cd python
jupyter notebook demo_3Dkeypoints_3dview.ipynb

The result should look like this.

Reprojecting 3D keypoints (body, face, hand) on a selected HD view:

cd python
jupyter notebook demo_3Dkeypoints_reprojection_hd.ipynb

The result should look like this.

Python + OpengGL

  • This codes require pyopengl.

  • Visualizing 3D keypoints (body, face, hand):

python glViewer.py

Matlab

Note: Matlab code is outdated, and does not handle 3D keypoint outputs (coco19 body, face, hand). Please see this code only for reference. We will update this later.

Matlab example (outdated):

>>> cd matlab
>>> demo

Skeleton Output Format

We reconstruct 3D skeleton of people using the method of Joo et al. 2018.

The output of each frame is written in a json file. For example,

{ "version": 0.7, 
"univTime" :53541.542,
"fpsType" :"hd_29_97",
"bodies" :
[
{ "id": 0,
"joints19": [-19.4528, -146.612, 1.46159, 0.724274, -40.4564, -163.091, -0.521563, 0.575897, -14.9749, -91.0176, 4.24329, 0.361725, -19.2473, -146.679, -16.1136, 0.643555, -14.7958, -118.804, -20.6738, 0.619599, -22.611, -93.8793, -17.7834, 0.557953, -12.3267, -91.5465, -6.55368, 0.353241, -12.6556, -47.0963, -4.83599, 0.455566, -10.8069, -8.31645, -4.20936, 0.501312, -20.2358, -147.348, 19.1843, 0.628022, -13.1145, -120.269, 28.0371, 0.63559, -20.1037, -94.3607, 30.0809, 0.625916, -17.623, -90.4888, 15.0403, 0.327759, -17.3973, -46.9311, 15.9659, 0.419586, -13.1719, -7.60601, 13.4749, 0.519653, -38.7164, -166.851, -3.25917, 0.46228, -28.7043, -167.333, -7.15903, 0.523224, -39.0433, -166.677, 2.55916, 0.395965, -30.0718, -167.264, 8.18371, 0.510041]
}
] }

Here, each subject has the following values.

id: a unique subject index within a sequence:. Skeletons with the same id across time represent temporally associated moving skeletons (an individual). However, the same person may have multiple ids joints19: 19 3D joint locations, formatted as [x1,y1,z1,c1,x2,y2,z2,c2,...] where each c ispanopticHDjoint confidence score.

The 3D skeletons have the following keypoint order:

0: Neck
1: Nose
2: BodyCenter (center of hips)
3: lShoulder
4: lElbow
5: lWrist,
6: lHip
7: lKnee
8: lAnkle
9: rShoulder
10: rElbow
11: rWrist
12: rHip
13: rKnee
14: rAnkle
15: lEye
16: lEar
17: rEye
18: rEar

Note that this is different from OpenPose output order, although our method is based on it.

Note that we used to use an old format (named mpi15 as described in our outdated document), but we do not this format anymore.

KinopticStudio Toolbox

Kinoptic Studio is a subsystem of Panoptic Studio, which is composed of 10 Kinect2 sensors. Please see: README_kinoptic

Panoptic 3D PointCloud DB ver.1

You can download all sequences included in our 3D PointCloud DB ver.1 using the following script:

./scripts/getDB_ptCloud_ver1.sh

Haggling DB

We have released the processed data for the haggling sequence. Please see Social Signal Processing repository.

Teaser Image

License

Panoptic Studio Dataset is freely available for non-commercial and research purpose only.

References

By using the dataset, you agree to cite at least one of the following papers.

@inproceedings{Joo_2015_ICCV,
author = {Joo, Hanbyul and Liu, Hao and Tan, Lei and Gui, Lin and Nabbe, Bart and Matthews, Iain and Kanade, Takeo and Nobuhara, Shohei and Sheikh, Yaser},
title = {Panoptic Studio: A Massively Multiview System for Social Motion Capture},
booktitle = {ICCV},
year = {2015} }

@inproceedings{Joo_2017_TPAMI,
title={Panoptic Studio: A Massively Multiview System for Social Interaction Capture},
author={Joo, Hanbyul and Simon, Tomas and Li, Xulong and Liu, Hao and Tan, Lei and Gui, Lin and Banerjee, Sean and Godisart, Timothy Scott and Nabbe, Bart and Matthews, Iain and Kanade, Takeo and Nobuhara, Shohei and Sheikh, Yaser},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2017} }

@inproceedings{Simon_2017_CVPR,
title={Hand Keypoint Detection in Single Images using Multiview Bootstrapping},
author={Simon, Tomas and Joo, Hanbyul and Sheikh, Yaser},
journal={CVPR},
year={2017} }

@inproceedings{joo2019ssp,
  title={Towards Social Artificial Intelligence: Nonverbal Social Signal Prediction in A Triadic Interaction},
  author={Joo, Hanbyul and Simon, Tomas and Cikara, Mina and Sheikh, Yaser},
  booktitle={CVPR},
  year={2019}
}



A python bot to move your mouse every few seconds to appear active on Skype, Teams or Zoom as you go AFK. 🐭 🤖

PyMouseBot If you're from GT and annoyed with SGVPN idle timeouts while working on development laptop, You might find this useful. A python cli bot to

Oaker Min 6 Oct 24, 2022
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022
Code for Reciprocal Adversarial Learning for Brain Tumor Segmentation: A Solution to BraTS Challenge 2021 Segmentation Task

BRATS 2021 Solution For Segmentation Task This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmenta

Himashi Amanda Peiris 6 Sep 15, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
Cross-Document Coreference Resolution

Cross-Document Coreference Resolution This repository contains code and models for end-to-end cross-document coreference resolution, as decribed in ou

Arie Cattan 29 Nov 28, 2022
Visual Tracking by TridenAlign and Context Embedding

Visual Tracking by TridentAlign and Context Embedding (TACT) Test code for "Visual Tracking by TridentAlign and Context Embedding" Janghoon Choi, Juns

Janghoon Choi 32 Aug 25, 2021
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other

ML_Model_implementaion Implementation of ML models like Decision tree, Naive Bayes, Logistic Regression and many other dectree_model: Implementation o

Anshuman Dalai 3 Jan 24, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
A lightweight tool to get an AI Infrastructure Stack up in minutes not days.

K3ai will take care of setup K8s for You, deploy the AI tool of your choice and even run your code on it.

k3ai 105 Dec 04, 2022
Pythonic particle-based (super-droplet) warm-rain/aqueous-chemistry cloud microphysics package with box, parcel & 1D/2D prescribed-flow examples in Python, Julia and Matlab

PySDM PySDM is a package for simulating the dynamics of population of particles. It is intended to serve as a building block for simulation systems mo

Atmospheric Cloud Simulation Group @ Jagiellonian University 32 Oct 18, 2022
Code for "Adversarial Attack Generation Empowered by Min-Max Optimization", NeurIPS 2021

Min-Max Adversarial Attacks [Paper] [arXiv] [Video] [Slide] Adversarial Attack Generation Empowered by Min-Max Optimization Jingkang Wang, Tianyun Zha

Jingkang Wang 12 Nov 23, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Vision-Language Transformer and Query Generation for Referring Segmentation (ICCV 2021)

Vision-Language Transformer and Query Generation for Referring Segmentation Please consider citing our paper in your publications if the project helps

Henghui Ding 143 Dec 23, 2022
Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid

SPN: Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid Code for Fully Context-Aware Image Inpainting with a Learned Semantic Pyrami

12 Jun 27, 2022
Harmonic Memory Networks for Graph Completion

HMemNetworks Code and documentation for Harmonic Memory Networks, a series of models for compositionally assembling representations of graph elements

mlalisse 0 Oct 27, 2021
The official implementation of ICCV paper "Box-Aware Feature Enhancement for Single Object Tracking on Point Clouds".

Box-Aware Tracker (BAT) Pytorch-Lightning implementation of the Box-Aware Tracker. Box-Aware Feature Enhancement for Single Object Tracking on Point C

Kangel Zenn 5 Mar 26, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022