GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

Overview

GCNet for Object Detection

PWC PWC PWC PWC

By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu.

This repo is a official implementation of "GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond" on COCO object detection based on open-mmlab's mmdetection. The core operator GC block could be find here. Many thanks to mmdetection for their simple and clean framework.

Update on 2020/12/07

The extension of GCNet got accepted by TPAMI (PDF).

Update on 2019/10/28

GCNet won the Best Paper Award at ICCV 2019 Neural Architects Workshop!

Update on 2019/07/01

The code is refactored. More results are provided and all configs could be found in configs/gcnet.

Notes: Both PyTorch official SyncBN and Apex SyncBN have some stability issues. During training, mAP may drops to zero and back to normal during last few epochs.

Update on 2019/06/03

GCNet is supported by the official mmdetection repo here. Thanks again for open-mmlab's work on open source projects.

Introduction

GCNet is initially described in arxiv. Via absorbing advantages of Non-Local Networks (NLNet) and Squeeze-Excitation Networks (SENet), GCNet provides a simple, fast and effective approach for global context modeling, which generally outperforms both NLNet and SENet on major benchmarks for various recognition tasks.

Citing GCNet

@article{cao2019GCNet,
  title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond},
  author={Cao, Yue and Xu, Jiarui and Lin, Stephen and Wei, Fangyun and Hu, Han},
  journal={arXiv preprint arXiv:1904.11492},
  year={2019}
}

Main Results

Results on R50-FPN with backbone (fixBN)

Back-bone Model Back-bone Norm Heads Context Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP mask AP Download
R50-FPN Mask fixBN 2fc (w/o BN) - 1x 3.9 0.453 10.6 37.3 34.2 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r16) 1x 4.5 0.533 10.1 38.5 35.1 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r4) 1x 4.6 0.533 9.9 38.9 35.5 model
R50-FPN Mask fixBN 2fc (w/o BN) - 2x - - - 38.2 34.9 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r16) 2x - - - 39.7 36.1 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r4) 2x - - - 40.0 36.2 model

Results on R50-FPN with backbone (syncBN)

Back-bone Model Back-bone Norm Heads Context Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP mask AP Download
R50-FPN Mask SyncBN 2fc (w/o BN) - 1x 3.9 0.543 10.2 37.2 33.8 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x 4.5 0.547 9.9 39.4 35.7 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x 4.6 0.603 9.4 39.9 36.2 model
R50-FPN Mask SyncBN 2fc (w/o BN) - 2x 3.9 0.543 10.2 37.7 34.3 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 2x 4.5 0.547 9.9 39.7 36.0 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 2x 4.6 0.603 9.4 40.2 36.3 model
R50-FPN Mask SyncBN 4conv1fc (SyncBN) - 1x - - - 38.8 34.6 model
R50-FPN Mask SyncBN 4conv1fc (SyncBN) GC(c3-c5, r16) 1x - - - 41.0 36.5 model
R50-FPN Mask SyncBN 4conv1fc (SyncBN) GC(c3-c5, r4) 1x - - - 41.4 37.0 model

Results on stronger backbones

Back-bone Model Back-bone Norm Heads Context Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP mask AP Download
R101-FPN Mask fixBN 2fc (w/o BN) - 1x 5.8 0.571 9.5 39.4 35.9 model
R101-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r16) 1x 7.0 0.731 8.6 40.8 37.0 model
R101-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r4) 1x 7.1 0.747 8.6 40.8 36.9 model
R101-FPN Mask SyncBN 2fc (w/o BN) - 1x 5.8 0.665 9.2 39.8 36.0 model
R101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x 7.0 0.778 9.0 41.1 37.4 model
R101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x 7.1 0.786 8.9 41.7 37.6 model
X101-FPN Mask SyncBN 2fc (w/o BN) - 1x 7.1 0.912 8.5 41.2 37.3 model
X101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x 8.2 1.055 7.7 42.4 38.0 model
X101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x 8.3 1.037 7.6 42.9 38.5 model
X101-FPN Cascade Mask SyncBN 2fc (w/o BN) - 1x - - - 44.7 38.3 model
X101-FPN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x - - - 45.9 39.3 model
X101-FPN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x - - - 46.5 39.7 model
X101-FPN DCN Cascade Mask SyncBN 2fc (w/o BN) - 1x - - - 47.1 40.4 model
X101-FPN DCN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x - - - 47.9 40.9 model
X101-FPN DCN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x - - - 47.9 40.8 model

Notes

  • GC denotes Global Context (GC) block is inserted after 1x1 conv of backbone.
  • DCN denotes replace 3x3 conv with 3x3 Deformable Convolution in c3-c5 stages of backbone.
  • r4 and r16 denote ratio 4 and ratio 16 in GC block respectively.
  • Some of models are trained on 4 GPUs with 4 images on each GPU.

Requirements

  • Linux(tested on Ubuntu 16.04)
  • Python 3.6+
  • PyTorch 1.1.0
  • Cython
  • apex (Sync BN)

Install

a. Install PyTorch 1.1 and torchvision following the official instructions.

b. Install latest apex with CUDA and C++ extensions following this instructions. The Sync BN implemented by apex is required.

c. Clone the GCNet repository.

 git clone https://github.com/xvjiarui/GCNet.git 

d. Compile cuda extensions.

cd GCNet
pip install cython  # or "conda install cython" if you prefer conda
./compile.sh  # or "PYTHON=python3 ./compile.sh" if you use system python3 without virtual environments

e. Install GCNet version mmdetection (other dependencies will be installed automatically).

python(3) setup.py install  # add --user if you want to install it locally
# or "pip install ."

Note: You need to run the last step each time you pull updates from github. Or you can run python(3) setup.py develop or pip install -e . to install mmdetection if you want to make modifications to it frequently.

Please refer to mmdetection install instruction for more details.

Environment

Hardware

  • 8 NVIDIA Tesla V100 GPUs
  • Intel Xeon 4114 CPU @ 2.20GHz

Software environment

  • Python 3.6.7
  • PyTorch 1.1.0
  • CUDA 9.0
  • CUDNN 7.0
  • NCCL 2.3.5

Usage

Train

As in original mmdetection, distributed training is recommended for either single machine or multiple machines.

./tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> [optional arguments]

Supported arguments are:

  • --validate: perform evaluation every k (default=1) epochs during the training.
  • --work_dir <WORK_DIR>: if specified, the path in config file will be replaced.

Evaluation

To evaluate trained models, output file is required.

python tools/test.py <CONFIG_FILE> <MODEL_PATH> [optional arguments]

Supported arguments are:

  • --gpus: number of GPU used for evaluation
  • --out: output file name, usually ends wiht .pkl
  • --eval: type of evaluation need, for mask-rcnn, bbox segm would evaluate both bounding box and mask AP.
Owner
Jerry Jiarui XU
Part of the journey is the end
Jerry Jiarui XU
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Synthetic Humans for Action Recognition, IJCV 2021

SURREACT: Synthetic Humans for Action Recognition from Unseen Viewpoints Gül Varol, Ivan Laptev and Cordelia Schmid, Andrew Zisserman, Synthetic Human

Gul Varol 59 Dec 14, 2022
Official Implementation of Domain-Aware Universal Style Transfer

Domain Aware Universal Style Transfer Official Pytorch Implementation of 'Domain Aware Universal Style Transfer' (ICCV 2021) Domain Aware Universal St

KibeomHong 80 Dec 30, 2022
DeceFL: A Principled Decentralized Federated Learning Framework

DeceFL: A Principled Decentralized Federated Learning Framework This repository comprises codes that reproduce experiments in Ye, et al (2021), which

Huazhong Artificial Intelligence Lab (HAIL) 10 May 31, 2022
A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution.

Awesome Pretrained StyleGAN2 A collection of pre-trained StyleGAN2 models trained on different datasets at different resolution. Note the readme is a

Justin 1.1k Dec 24, 2022
A tutorial on DataFrames.jl prepared for JuliaCon2021

JuliaCon2021 DataFrames.jl Tutorial This is a tutorial on DataFrames.jl prepared for JuliaCon2021. A video recording of the tutorial is available here

Bogumił Kamiński 106 Jan 09, 2023
CLIP+FFT text-to-image

Aphantasia This is a text-to-image tool, part of the artwork of the same name. Based on CLIP model, with FFT parameterizer from Lucent library as a ge

vadim epstein 690 Jan 02, 2023
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
Pytorch Implementation of LNSNet for Superpixel Segmentation

LNSNet Overview Official implementation of Learning the Superpixel in a Non-iterative and Lifelong Manner (CVPR'21) Learning Strategy The proposed LNS

42 Oct 11, 2022
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
Distributing reference energies for SMIRNOFF implementations

Warning: This code is currently experimental and under active development. Is it not yet suitable for distribution or use as reference implementation.

Open Force Field Initiative 1 Dec 07, 2021
This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation".

Prompt-Based Multi-Modal Image Segmentation This repository contains the code used in the paper "Prompt-Based Multi-Modal Image Segmentation". The sys

Timo Lüddecke 305 Dec 30, 2022
FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data

FAST Aiming at the problems of cumbersome steps and slow download speed of GNSS data, a relatively complete set of integrated multi-source data download terminal software fast is developed. The softw

ChangChuntao 23 Dec 31, 2022
Indonesian Car License Plate Character Recognition using Tensorflow, Keras and OpenCV.

Monopol Indonesian Car License Plate (Indonesia Mobil Nomor Polisi) Character Recognition using Tensorflow, Keras and OpenCV. Background This applicat

Jayaku Briliantio 3 Apr 07, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
《Train in Germany, Test in The USA: Making 3D Object Detectors Generalize》(CVPR 2020)

Train in Germany, Test in The USA: Making 3D Object Detectors Generalize This paper has been accpeted by Conference on Computer Vision and Pattern Rec

Xiangyu Chen 101 Jan 02, 2023
Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge

Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-end TTS by Leveraging External Textual Knowledge This is an implementation of the paper,

Mutian He 19 Oct 14, 2022