Spearmint Bayesian optimization codebase

Overview

Spearmint

Spearmint is a software package to perform Bayesian optimization. The Software is designed to automatically run experiments (thus the code name spearmint) in a manner that iteratively adjusts a number of parameters so as to minimize some objective in as few runs as possible.

IMPORTANT: Spearmint is under an Academic and Non-Commercial Research Use License. Before using spearmint please be aware of the license. If you do not qualify to use spearmint you can ask to obtain a license as detailed in the license or you can use the older open source code version (which is somewhat outdated) at https://github.com/JasperSnoek/spearmint.

Relevant Publications

Spearmint implements a combination of the algorithms detailed in the following publications:

Practical Bayesian Optimization of Machine Learning Algorithms  
Jasper Snoek, Hugo Larochelle and Ryan Prescott Adams  
Advances in Neural Information Processing Systems, 2012  

Multi-Task Bayesian Optimization  
Kevin Swersky, Jasper Snoek and Ryan Prescott Adams  
Advances in Neural Information Processing Systems, 2013  

Input Warping for Bayesian Optimization of Non-stationary Functions  
Jasper Snoek, Kevin Swersky, Richard Zemel and Ryan Prescott Adams  
International Conference on Machine Learning, 2014  

Bayesian Optimization and Semiparametric Models with Applications to Assistive Technology  
Jasper Snoek, PhD Thesis, University of Toronto, 2013  

Bayesian Optimization with Unknown Constraints
Michael Gelbart, Jasper Snoek and Ryan Prescott Adams
Uncertainty in Artificial Intelligence, 2014

Setting up Spearmint

STEP 1: Installation

  1. Install python, numpy, scipy, pymongo. For academic users, the anaconda distribution is great. Use numpy 1.8 or higher. We use python 2.7.
  2. Download/clone the spearmint code
  3. Install the spearmint package using pip: pip install -e \</path/to/spearmint/root\> (the -e means changes will be reflected automatically)
  4. Download and install MongoDB: https://www.mongodb.org/
  5. Install the pymongo package using e.g., pip pip install pymongo or anaconda conda install pymongo

STEP 2: Setting up your experiment

  1. Create a callable objective function. See ./examples/simple/branin.py as an example
  2. Create a config file. There are 3 example config files in the ../examples directory. Note 1: There are more parameters that can be set in the config files than what is shown in the examples, but these parameters all have default values. Note 2: By default Spearmint assumes your function is noisy (non-deterministic). If it is noise-free, you should set this explicitly as in the ../examples/simple/config.json file.

STEP 3: Running spearmint

  1. Start up a MongoDB daemon instance:
    mongod --fork --logpath <path/to/logfile\> --dbpath <path/to/dbfolder\>
  2. Run spearmint: python main.py \</path/to/experiment/directory\>

STEP 4: Looking at your results
Spearmint will output results to standard out / standard err. You can also load the results from the database and manipulate them directly.

Owner
Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton
Ryan Adams' research group. Formerly at Harvard, now at Princeton. New Github repositories here: https://github.com/PrincetonLIPS
Formerly: Harvard Intelligent Probabilistic Systems Group -- Now at Princeton
Meta-meta-learning with evolution and plasticity

Evolve plastic networks to be able to automatically acquire novel cognitive (meta-learning) tasks

5 Jun 28, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
PyTorch implementation of Barlow Twins.

Barlow Twins: Self-Supervised Learning via Redundancy Reduction PyTorch implementation of Barlow Twins. @article{zbontar2021barlow, title={Barlow Tw

Facebook Research 839 Dec 29, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

PyTorch Implementation of Daft-Exprt: Robust Prosody Transfer Across Speakers for Expressive Speech Synthesis

Ubisoft 76 Dec 30, 2022
Release of the ConditionalQA dataset

ConditionalQA Datasets accompanying the paper ConditionalQA: A Complex Reading Comprehension Dataset with Conditional Answers. Disclaimer This dataset

14 Oct 17, 2022
Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing"

ProxyFL Code accompanying the paper "ProxyFL: Decentralized Federated Learning through Proxy Model Sharing" Authors: Shivam Kalra*, Junfeng Wen*, Jess

Layer6 Labs 14 Dec 06, 2022
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
An official repository for Paper "Uformer: A General U-Shaped Transformer for Image Restoration".

Uformer: A General U-Shaped Transformer for Image Restoration Zhendong Wang, Xiaodong Cun, Jianmin Bao and Jianzhuang Liu Paper: https://arxiv.org/abs

Zhendong Wang 497 Dec 22, 2022
BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond

BasicVSR BasicVSR: The Search for Essential Components in Video Super-Resolution and Beyond Ported from https://github.com/xinntao/BasicSR Dependencie

Holy Wu 8 Jun 07, 2022
dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ)

dualFace dualFace: Two-Stage Drawing Guidance for Freehand Portrait Sketching (CVMJ) We provide python implementations for our CVM 2021 paper "dualFac

Haoran XIE 46 Nov 10, 2022
Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020).

SentiBERT Code for SentiBERT: A Transferable Transformer-Based Architecture for Compositional Sentiment Semantics (ACL'2020). https://arxiv.org/abs/20

Da Yin 66 Aug 13, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
A machine learning benchmark of in-the-wild distribution shifts, with data loaders, evaluators, and default models.

WILDS is a benchmark of in-the-wild distribution shifts spanning diverse data modalities and applications, from tumor identification to wildlife monitoring to poverty mapping.

P-Lambda 437 Dec 30, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022