3D detection and tracking viewer (visualization) for kitti & waymo dataset

Overview

3D Detection & Tracking Viewer

This project was developed for view 3D object detection and tracking results. It supports rendering 3D bounding boxes as car models and rendering boxes on images.

Features

  • Rendering boxes as cars
  • Captioning box ids(infos) in 3D scene
  • Projecting 3D box or points on 2D image

Design pattern

This code includes two parts, one for data loading, other one for visualization of 3D detection and tracking results. The overall framework of design is as shown below:

Prepare data

  • Kitti detection dataset
# For Kitti Detection Dataset         
└── kitti_detection
       ├── testing 
       |      ├──calib
       |      ├──image_2
       |      ├──label_2
       |      └──velodyne      
       └── training
              ├──calib
              ├──image_2
              ├──label_2
              └──velodyne 
  • Kitti tracking dataset
# For Kitti Tracking Dataset         
└── kitti_tracking
       ├── testing 
       |      ├──calib
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      ├──image_02
       |      |    ├──0000
       |      |    ├──....
       |      |    └──0028
       |      ├──label_02
       |      |    ├──0000.txt
       |      |    ├──....txt
       |      |    └──0028.txt
       |      └──velodyne
       |           ├──0000
       |           ├──....
       |           └──0028      
       └── training # the structure is same as testing set
              ├──calib
              ├──image_02
              ├──label_02
              └──velodyne 
  • Waymo dataset

Please refer to the OpenPCDet for Waymo dataset organization.

Requirements

python3
numpy
vedo
vtk
opencv
matplotlib

Usage

1. Set boxes type & viewer background color

Currently this code supports Kitti (h,w,l,x,y,z,yaw) and Waymo OpenPCDet (x,y,z,l,w,h,yaw) box type. You can set the box type and background color when initializing a viewer as

from viewer.viewer import Viewer

vi = Viewer(box_type="Kitti",bg = (255,255,255))

2. Set objects color map

You can set the objects color map for view tracking results, same as matplotlab.pypot color map. The common used color maps are "rainbow", "viridis","brg","gnuplot","hsv" and etc.

vi.set_ob_color_map('rainbow')

3. Add colorized point clouds to 3D scene

The viewer receive a set of points, it must be a array with shape (N,3). If you want to view the scatter filed, you should to set the 'scatter_filed' with a shape (N,), and set the 'color_map_name' to specify the colors. If the 'scatter_filed' is None, the points will show in color of 'color' arg.

vi.add_points(points[:,0:3],
               radius = 2,
               color = (150,150,150),
               scatter_filed=points[:,2],
               alpha=1,
               del_after_show='True',
               add_to_3D_scene = True,
               add_to_2D_scene = True,
               color_map_name = "viridis")

4. Add boxes or cars to 3D scene

The viewer receive a set of boxes, it must be a array with shape (N,7). You can set the boxes to meshes or lines only, you also can set the line width, conner points. Besides, you can provide a set of IDs(int) to colorize the boxes, and put a set of additional infos to caption the boxes. Note that, the color will set to the color of "color" arg if the ids is None.

vi.add_3D_boxes(boxes=boxes[:,0:7],
                 ids=ids,
                 box_info=infos,
                 color="blue",
                 add_to_3D_scene=True,
                 mesh_alpha = 0.3,
                 show_corner_spheres = True,
                 corner_spheres_alpha = 1,
                 corner_spheres_radius=0.1,
                 show_heading = True,
                 heading_scale = 1,
                 show_lines = True,
                 line_width = 2,
                 line_alpha = 1,
                 show_ids = True,
                 show_box_info=True,
                 del_after_show=True,
                 add_to_2D_scene=True,
                 caption_size=(0.05,0.05)
                 )

You can also render the boxes as cars, the input format is same as boxes.

vi.add_3D_cars(boxes=boxes[:,0:7],
                 ids=ids,
                 box_info=infos,
                 color="blue",
                 mesh_alpha = 1,
                 show_ids = True,
                 show_box_info=True,
                 del_after_show=True,
                 car_model_path="viewer/car.obj",
                 caption_size = (0.1, 0.1)
                )

5. View boxes or points on image

To view the 3D box and points on image, firstly should set the camera intrinsic, extrinsic mat, and put a image. Besides, when adding the boxes and points, the 'add_to_2D_scene' should be set to True.

vi.add_image(image)
vi.set_extrinsic_mat(V2C)
vi.set_intrinsic_mat(P2)

6. Show 2D and 3D results

To show a single frame, you can directly run vi.show_2D(), vi.show_3D(). The visualization window will not close until you press the "Enter" key. Please zoom out the 3D scene by scrolling the middle mouse button backward, and then you can see the point cloud in this window. You can change the viewing angle by dragging the mouse within the visualization window.

To show multiple frames, you can use the for loop, and press the "Enter" key to view a sequence data.

for i in range(len(dataset)):
    V2C, P2, image, boxes = dataset[i]
    vi.add_3D_boxes(boxes)
    vi.add_image(image)
    vi.set_extrinsic_mat(V2C)
    vi.set_intrinsic_mat(P2)
    vi.show_2D()
    vi.show_3D()
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
(CVPR 2022) A minimalistic mapless end-to-end stack for joint perception, prediction, planning and control for self driving.

LAV Learning from All Vehicles Dian Chen, Philipp Krähenbühl CVPR 2022 (also arXiV 2203.11934) This repo contains code for paper Learning from all veh

Dian Chen 300 Dec 15, 2022
Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Video Object Segmentation.

Training Script for Reuse-VOS This code implementation of CVPR 2021 paper : Learning Dynamic Network Using a Reuse Gate Function in Semi-supervised Vi

HYOJINPARK 22 Jan 01, 2023
MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page] Anh-Quan Cao, Rao

298 Jan 08, 2023
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
BoxInst: High-Performance Instance Segmentation with Box Annotations

Introduction This repository is the code that needs to be submitted for OpenMMLab Algorithm Ecological Challenge, the paper is BoxInst: High-Performan

88 Dec 21, 2022
Trainable Bilateral Filter Layer (PyTorch)

Trainable Bilateral Filter Layer (PyTorch) This repository contains our GPU-accelerated trainable bilateral filter layer (three spatial and one range

FabianWagner 26 Dec 25, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022
Continual Learning of Long Topic Sequences in Neural Information Retrieval

ContinualPassageRanking Repository for the paper "Continual Learning of Long Topic Sequences in Neural Information Retrieval". In this repository you

0 Apr 12, 2022
GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images

GLNet for Memory-Efficient Segmentation of Ultra-High Resolution Images Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-

VITA 298 Dec 12, 2022
On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Facebook Research 46 Dec 15, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022
Lazy, a tool for running things in idle time

Lazy, a tool for running things in idle time Mostly used to stop CUDA ML model training from making my desktop unusable. Simply monitors keyboard/mous

N Shepperd 46 Nov 06, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
The fundamental package for scientific computing with Python.

NumPy is the fundamental package needed for scientific computing with Python. Website: https://www.numpy.org Documentation: https://numpy.org/doc Mail

NumPy 22.4k Jan 09, 2023
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
Official code for our EMNLP2021 Outstanding Paper MindCraft: Theory of Mind Modeling for Situated Dialogue in Collaborative Tasks

MindCraft Authors: Cristian-Paul Bara*, Sky CH-Wang*, Joyce Chai This is the official code repository for the paper (arXiv link): Cristian-Paul Bara,

Situated Language and Embodied Dialogue (SLED) Research Group 14 Dec 29, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022