Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Overview

Introduction

Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants.

This codebase contains two packages:

  1. anhp: Attentive-Neural Hawkes Process (A-NHP)
  2. andtt: Attentive-Neural Datalog Through Time (A-NDTT).

Author: Chenghao Yang ([email protected])

Reference

If you use this code as part of any published research, please acknowledge the following paper (it encourages researchers who publish their code!):

@article{yang-2021-transformer,
  author =      {Chenghao Yang and Hongyuan Mei and Jason Eisner},
  title =       {Transformer Embeddings of Irregularly Spaced Events and Their Participants},
  journal =     {arXiv preprint arxiv:2201.00044},
  year =        {2021}
}

Instructions

Here are the instructions to use the code base.

Dependencies and Installation

This code is written in Python 3, and I recommend you to install:

  • Anaconda that provides almost all the Python-related dependencies;

This project relies on Datalog Utilities in NDTT project, please first install it. (please remove the torch version (1.1.0) in setup.py of NDTT project, because that is not the requirement of this project and we only use non-pytorch part of NDTT. We recommend using torch>=1.7 for this project.).

Then run the command line below to install the package (add -e option if you need an editable installation):

pip install .

Dataset Preparation

Download datasets and programs from here.

Organize your domain datasets as follows:

domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA

(A-NDTT-only) Build Dynamic Databases

Go to the andtt/run directory.

To build the dynamic databases for your data, try the command line below for detailed guide:

python build.py --help

The generated dynamic model architectures (represented by database facts) are stored in this directory:

domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA/tdbcache

Train Models

To train the model specified by your Datalog probram, try the command line below for detailed guide:

python train.py --help

The training log and model parameters are stored in this directory:

# A-NHP
domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA/ContKVLogs
# A-NDTT
domains/YOUR_DOMAIN/YOUR_PROGRAMS_AND_DATA/Logs

Example command line for training:

# A-NHP
python train.py -d YOUR_DOMAIN -ps ../../ -bs BATCH_SIZE -me 50 -lr 1e-4 -d_model 32 -teDim 10 -sd 1111 -layer 1
# A-NDTT
python train.py -d YOUR_DOMAIN -db YOUR_PROGRAM -ps ../../ -bs BATCH_SIZE -me 50 -lr 1e-4 -d_model 32 -teDim 10 -sd 1111 -layer 1

Test Models

To test the trained model, use the command line below for detailed guide:

python test.py --help

Example command line for testing:

python test.py -d YOUR_DOMAIN -fn FOLDER_NAME -s test -sd 12345 -pred

To evaluate the model predictions, use the command line below for detailed guide:

python eval.py --help

Example command line for testing:

python eval.py -d YOUR_DOMAIN -fn FOLDER_NAME -s test

License

This project is licensed under the MIT License - see the LICENSE file for details.

Acknowledgements

  1. The transformer component implementation used in this repo is based on widely-recognized Annotated Transformer.
  2. The code structure is inspired by Prof. Hongyuan Mei's Neural Datalog Through Time
Owner
Alan Yang
AWS Applied Scientist Intern. [email protected] CLSP; M.S. & RA @columbia; Ex-intern @IBM Watson; B.S.
Alan Yang
Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph

Build an Amazon SageMaker Pipeline to Transform Raw Texts to A Knowledge Graph This repository provides a pipeline to create a knowledge graph from ra

AWS Samples 3 Jan 01, 2022
Official implementation of paper "Query2Label: A Simple Transformer Way to Multi-Label Classification".

Introdunction This is the official implementation of the paper "Query2Label: A Simple Transformer Way to Multi-Label Classification". Abstract This pa

Shilong Liu 274 Dec 28, 2022
A light and fast one class detection framework for edge devices. We provide face detector, head detector, pedestrian detector, vehicle detector......

A Light and Fast Face Detector for Edge Devices Big News: LFD, which is a big update of LFFD, now is released (2021.03.09). It is strongly recommended

YonghaoHe 1.3k Dec 25, 2022
Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

Sanyuan Chen (陈三元) 81 Nov 28, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Python interface for the DIGIT tactile sensor

DIGIT-INTERFACE Python interface for the DIGIT tactile sensor. For updates and discussions please join the #DIGIT channel at the www.touch-sensing.org

Facebook Research 35 Dec 22, 2022
Finetune SSL models for MOS prediction

Finetune SSL models for MOS prediction This is code for our paper under review for ICASSP 2022: "Generalization Ability of MOS Prediction Networks" Er

Yamagishi and Echizen Laboratories, National Institute of Informatics 32 Nov 22, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a

Tristan Croll 24 Nov 23, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai

Coursera-deep-learning-specialization - Notes, programming assignments and quizzes from all courses within the Coursera Deep Learning specialization offered by deeplearning.ai: (i) Neural Networks an

Aman Chadha 1.7k Jan 08, 2023
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Lua-parser-lark - An out-of-box Lua parser written in Lark

An out-of-box Lua parser written in Lark Such parser handles a relaxed version o

Taine Zhao 2 Jul 19, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
[EMNLP 2021] MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity Representations

MuVER This repo contains the code and pre-trained model for our EMNLP 2021 paper: MuVER: Improving First-Stage Entity Retrieval with Multi-View Entity

24 May 30, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022