PyTorch implementation of popular datasets and models in remote sensing

Related tags

Deep Learningtorchrs
Overview

PyTorch Remote Sensing (torchrs)

(WIP) PyTorch implementation of popular datasets and models in remote sensing tasks (Change Detection, Image Super Resolution, Land Cover Classification/Segmentation, Image-to-Image Translation, etc.) for various Optical (Sentinel-2, Landsat, etc.) and Synthetic Aperture Radar (SAR) (Sentinel-1) sensors.

Installation

# pypi
pip install torch-rs

# latest
pip install git+https://github.com/isaaccorley/torchrs

Table of Contents

Datasets

PROBA-V Super Resolution

The PROBA-V Super Resolution Challenge dataset is a Multi-image Super Resolution (MISR) dataset of images taken by the ESA PROBA-Vegetation satellite. The dataset contains sets of unregistered 300m low resolution (LR) images which can be used to generate single 100m high resolution (HR) images for both Near Infrared (NIR) and Red bands. In addition, Quality Masks (QM) for each LR image and Status Masks (SM) for each HR image are available. The PROBA-V contains sensors which take imagery at 100m and 300m spatial resolutions with 5 and 1 day revisit rates, respectively. Generating high resolution imagery estimates would effectively increase the frequency at which HR imagery is available for vegetation monitoring.

The dataset can be downloaded (0.83GB) using scripts/download_probav.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import PROBAV

transform = Compose([ToTensor()])

dataset = PROBAV(
    root="path/to/dataset/",
    split="train",  # or 'test'
    band="RED",     # or 'NIR'
    lr_transform=transform,
    hr_transform=transform
)

x = dataset[0]
"""
x: dict(
    lr: low res images  (t, 1, 128, 128)
    qm: quality masks   (t, 1, 128, 128)
    hr: high res image  (1, 384, 384)
    sm: status mask     (1, 384, 384)
)
t varies by set of images (minimum of 9)
"""

ETCI 2021 Flood Detection

The ETCI 2021 Dataset is a Flood Detection segmentation dataset of SAR images taken by the ESA Sentinel-1 satellite. The dataset contains pairs of VV and VH polarization images processed by the Hybrid Pluggable Processing Pipeline (hyp3) along with corresponding binary flood and water body ground truth masks.

The dataset can be downloaded (5.6GB) using scripts/download_etci2021.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import ETCI2021

transform = Compose([ToTensor()])

dataset = ETCI2021(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    vv:         (3, 256, 256)
    vh:         (3, 256, 256)
    flood_mask: (1, 256, 256)
    water_mask: (1, 256, 256)
)
"""

Onera Satellite Change Detection (OSCD)

The Onera Satellite Change Detection (OSCD) dataset, proposed in "Urban Change Detection for Multispectral Earth Observation Using Convolutional Neural Networks", Daudt et al. is a Change Detection dataset of 13 band multispectral (MS) images taken by the ESA Sentinel-2 satellite. The dataset contains 24 registered image pairs from multiple continents between 2015-2018 along with binary change masks.

The dataset can be downloaded (0.73GB) using scripts/download_oscd.sh and instantiated below:

from torchrs.transforms import Compose, ToTensor
from torchrs.datasets import OSCD

transform = Compose([ToTensor(permute_dims=False)])

dataset = OSCD(
    root="path/to/dataset/",
    split="train",  # or 'test'
    transform=transform,
)

x = dataset[0]
"""
x: dict(
    x: (2, 13, h, w)
    mask: (1, h, w)
)
"""

Remote Sensing Visual Question Answering (RSVQA) Low Resolution (LR)

The RSVQA LR dataset, proposed in "RSVQA: Visual Question Answering for Remote Sensing Data", Lobry et al. is a visual question answering (VQA) dataset of RGB images taken by the ESA Sentinel-2 satellite. Each image is annotated with a set of questions and their corresponding answers. Among other applications, this dataset can be used to train VQA models to perform scene understanding of medium resolution remote sensing imagery.

The dataset can be downloaded (0.2GB) using scripts/download_rsvqa_lr.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RSVQALR

transform = T.Compose([T.ToTensor()])

dataset = RSVQALR(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    x:         (3, 256, 256)
    questions:  List[str]
    answers:    List[str]
    types:      List[str]
)
"""

Remote Sensing Image Captioning Dataset (RSICD)

The RSICD dataset, proposed in "Exploring Models and Data for Remote Sensing Image Caption Generation", Lu et al. is an image captioning dataset with 5 captions per image for 10,921 RGB images extracted using Google Earth, Baidu Map, MapABC and Tianditu. While one of the larger remote sensing image captioning datasets, this dataset contains very repetitive language with little detail and many captions are duplicated.

The dataset can be downloaded (0.57GB) using scripts/download_rsicd.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RSICD

transform = T.Compose([T.ToTensor()])

dataset = RSICD(
    root="path/to/dataset/",
    split="train",  # or 'val', 'test'
    transform=transform
)

x = dataset[0]
"""
x: dict(
    x:        (3, 224, 224)
    captions: List[str]
)
"""

Remote Sensing Image Scene Classification (RESISC45)

The RESISC45 dataset, proposed in "Remote Sensing Image Scene Classification: Benchmark and State of the Art", Cheng et al. is an image classification dataset of 31,500 RGB images extracted using Google Earth Engine. The dataset contains 45 scenes with 700 images per class from over 100 countries and was selected to optimize for high variability in image conditions (spatial resolution, occlusion, weather, illumination, etc.).

The dataset can be downloaded (0.47GB) using scripts/download_resisc45.sh and instantiated below:

import torchvision.transforms as T
from torchrs.datasets import RESISC45

transform = T.Compose([T.ToTensor()])

dataset = RESISC45(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (3, 256, 256)
y: int
"""

dataset.classes
"""
['airplane', 'airport', 'baseball_diamond', 'basketball_court', 'beach', 'bridge', 'chaparral',
'church', 'circular_farmland', 'cloud', 'commercial_area', 'dense_residential', 'desert', 'forest',
'freeway', 'golf_course', 'ground_track_field', 'harbor', 'industrial_area', 'intersection', 'island',
'lake', 'meadow', 'medium_residential', 'mobile_home_park', 'mountain', 'overpass', 'palace', 'parking_lot',
'railway', 'railway_station', 'rectangular_farmland', 'river', 'roundabout', 'runway', 'sea_ice', 'ship',
'snowberg', 'sparse_residential', 'stadium', 'storage_tank', 'tennis_court', 'terrace', 'thermal_power_station', 'wetland']
"""

EuroSAT

The EuroSAT dataset, proposed in "EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification", Helber et al. is a land cover classification dataset of 27,000 images taken by the ESA Sentinel-2 satellite. The dataset contains 10 land cover classes with 2-3k images per class from over 34 European countries. The dataset is available in the form of RGB only or all Multispectral (MS) Sentinel-2 bands. This dataset is fairly easy with ~98.6% accuracy achieved with a ResNet-50.

The dataset can be downloaded (.13GB and 2.8GB) using scripts/download_eurosat_rgb.sh or scripts/download_eurosat_ms.sh and instantiated below:

import torchvision.transforms as T
from torchrs.transforms import ToTensor
from torchrs.datasets import EuroSATRGB, EuroSATMS

transform = T.Compose([T.ToTensor()])

dataset = EuroSATRGB(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (3, 64, 64)
y: int
"""

transform = T.Compose([ToTensor()])

dataset = EuroSATMS(
    root="path/to/dataset/",
    transform=transform
)

x, y = dataset[0]
"""
x: (13, 64, 64)
y: int
"""

dataset.classes
"""
['AnnualCrop', 'Forest', 'HerbaceousVegetation', 'Highway', 'Industrial',
'Pasture', 'PermanentCrop', 'Residential', 'River', 'SeaLake']
"""

Models

RAMS

Residual Attention Multi-image Super-resolution Network (RAMS) from "Multi-Image Super Resolution of Remotely Sensed Images Using Residual Attention Deep Neural Networks", Salvetti et al. (2021)

RAMS is currently one of the top performers on the PROBA-V Super Resolution Challenge. This Multi-image Super Resolution (MISR) architecture utilizes attention based methods to extract spatial and spatiotemporal features from a set of low resolution images to form a single high resolution image. Note that the attention methods are effectively Squeeze-and-Excitation blocks from "Squeeze-and-Excitation Networks", Hu et al..

import torch
from torchrs.models import RAMS

# increase resolution by factor of 3 (e.g. 128x128 -> 384x384)
model = RAMS(
    scale_factor=3,
    t=9,
    c=1,
    num_feature_attn_blocks=12
)

# Input should be of shape (bs, t, c, h, w), where t is the number
# of low resolution input images and c is the number of channels/bands
lr = torch.randn(1, 9, 1, 128, 128)
sr = model(lr) # (1, 1, 384, 384)

Tests

$ pytest -ra
Comments
  • Error in training example

    Error in training example

    Following the example from the README:

    ValueError                                Traceback (most recent call last)
    <ipython-input-11-f854c515c2ab> in <module>()
    ----> 1 trainer.fit(model, datamodule=dm)
    
    23 frames
    /usr/local/lib/python3.7/dist-packages/torchmetrics/functional/classification/stat_scores.py in _stat_scores_update(preds, target, reduce, mdmc_reduce, num_classes, top_k, threshold, multiclass, ignore_index)
        123         if not mdmc_reduce:
        124             raise ValueError(
    --> 125                 "When your inputs are multi-dimensional multi-class, you have to set the `mdmc_reduce` parameter"
        126             )
        127         if mdmc_reduce == "global":
    
    ValueError: When your inputs are multi-dimensional multi-class, you have to set the `mdmc_reduce` parameter
    
    opened by robmarkcole 3
  • probaV key issue

    probaV key issue

    Listed as

        def __getitem__(self, idx: int) -> Dict[str, torch.Tensor]:
            """ Returns a dict containing lrs, qms, hr, sm
            lrs: (t, 1, h, w) low resolution images
    

    but the key is actually lr. Similarly its not qms but qm

    opened by robmarkcole 3
  • Hello, I use gid data and use the FCEFModule model to train, but the following error is reported. Is it because of a version problem? thanks

    Hello, I use gid data and use the FCEFModule model to train, but the following error is reported. Is it because of a version problem? thanks

    there is my code

    import torch
    import torch.nn as nn
    import pytorch_lightning as pl
    from torchrs.datasets import GID15
    from torchrs.train.modules import FCEFModule
    from torchrs.train.datamodules import GID15DataModule
    from torchrs.transforms import Compose, ToTensor
    
    
    def collate_fn(batch):
        x = torch.stack([x["x"] for x in batch])
        y = torch.cat([x["mask"] for x in batch])
        x = x.to(torch.float32)
        y = y.to(torch.long)
        return x, y
    
    transform = Compose([ToTensor()])
    
    dm = GID15DataModule(
        root="./datasets/gid-15",
        transform=transform,
        batch_size=128,
        num_workers=1,
        prefetch_factor=1,
        collate_fn=collate_fn,
        test_collate_fn=collate_fn,
    )
    
    
    model = FCEFModule(channels=3, t=2, num_classes=15, lr=1E-3)
    
    
    callbacks = [
        pl.callbacks.ModelCheckpoint(monitor="val_loss", mode="min", verbose=True, save_top_k=1),
        pl.callbacks.EarlyStopping(monitor="val_loss", mode="min", patience=10)
    ]
    
    trainer = pl.Trainer(
        gpus=1,
        precision=16,
        accumulate_grad_batches=1,
        max_epochs=25,
        callbacks=callbacks,
        weights_summary="top"
    )
    #
    trainer.fit(model, datamodule=dm)
    trainer.test(datamodule=dm)
    

    Error

    image

    opened by olongfen 2
  • Torchmetrics update

    Torchmetrics update

    • Updated segmentation metrics input args (namely added the mdmc_average="global" args) e.g.
    torchmetrics.Accuracy(threshold=0.5, num_classes=num_classes, average="micro", mdmc_average="global"),
    
    opened by isaaccorley 0
  • Change Detection models

    Change Detection models

    • Added EarlyFusion (EF) and Siamese (Siam) from the OSCD dataset paper
    • Added Fully convolutional EarlyFusion (FC-EF), Siamese Concatenation (FC-Siam-conc), and Siamese Difference (FC-Siam-diff)
    opened by isaaccorley 0
  • converted to datamodules and modules, updated readme, added install e…

    converted to datamodules and modules, updated readme, added install e…

    • Created LightningDataModule for each Dataset
    • Created LightningModule for each Model
    • Moved some config in setup.py to setup.cfg
    • Some minor fixes to a few datasets
    opened by isaaccorley 0
  • fair1m Only small part 1 dataset

    fair1m Only small part 1 dataset

    I noticed the official dataset is split into parts 1 & 2, with the bulk of the images being in part 2

    image

    The data downloaded using the script in this repo only downloads a subset of 1733 images, which I believe are the part 1 images?

    opened by robmarkcole 2
  • probav training memory error

    probav training memory error

    Using colab pro with nominally 25 Gb I am still running out of memory at 17 epochs using your probav example notebook. Is there any way to free memory on the fly? I was able to train the tensorflow RAMS implementation to 50 epochs on colab pro

    CUDA out of memory. Tried to allocate 46.00 MiB (GPU 0; 15.90 GiB total capacity; 14.01 GiB already allocated; 25.75 MiB free; 14.96 GiB reserved in total by PyTorch)
    
    opened by robmarkcole 5
Releases(0.0.4)
  • 0.0.4(Sep 3, 2021)

    • Added RSVQAHR, Sydney Captions, UC Merced Captions, S2MTCP, ADVANCE, SAT-4, SAT-6, HRSCD, Inria AIL, TiSeLaC, GID-15, ZeuriCrop, AID, Dubai Segmentation, HKH Glacier Mapping, UC Merced, PatternNet, WHU-RS19, RSSCN7, Brazilian Coffee Scenes datasets & datamodules
    • Added methods for creating train/val/test splits in datamodules
    • Added ExtractChips transform
    • Added dataset and datamodules local tests
    • Added h5py, imagecodecs, torchaudio reqs
    • Some minor fixes+additions to current datasets
    • Added FCEF, FCSiamConc, FCSiamDiff PL modules
    Source code(tar.gz)
    Source code(zip)
  • 0.0.3(Aug 2, 2021)

  • 0.0.2(Jul 26, 2021)

Owner
isaac
Senior Computer Vision Engineer @ BlackSky, Ph.D. Student at the University of Texas at San Antonio. Former @housecanary, @boozallen, @swri, @ornl
isaac
Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks

Self-Supervised Learning of Event-based Optical Flow with Spiking Neural Networks Work accepted at NeurIPS'21 [paper, video]. If you use this code in

TU Delft 43 Dec 07, 2022
Try out deep learning models online on Google Colab

Try out deep learning models online on Google Colab

Erdene-Ochir Tuguldur 1.5k Dec 27, 2022
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Official implementation of the paper ``Unifying Nonlocal Blocks for Neural Networks'' (ICCV'21)

Spectral Nonlocal Block Overview Official implementation of the paper: Unifying Nonlocal Blocks for Neural Networks (ICCV'21) Spectral View of Nonloca

91 Dec 14, 2022
Trajectory Prediction with Graph-based Dual-scale Context Fusion

DSP: Trajectory Prediction with Graph-based Dual-scale Context Fusion Introduction This is the project page of the paper Lu Zhang, Peiliang Li, Jing C

HKUST Aerial Robotics Group 103 Jan 04, 2023
MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

MemStream Implementation of MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift . Siddharth Bhatia, Arjit Jain, Shivi

Stream-AD 61 Dec 02, 2022
Official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification

CrossViT This repository is the official implementation of CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image Classification. ArXiv If

International Business Machines 168 Dec 29, 2022
The official code of Anisotropic Stroke Control for Multiple Artists Style Transfer

ASMA-GAN Anisotropic Stroke Control for Multiple Artists Style Transfer Proceedings of the 28th ACM International Conference on Multimedia The officia

Six_God 146 Nov 21, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485

python-pylontech Python lib to talk to pylontech lithium batteries (US2000, US3000, ...) using RS485 What is this lib ? This lib is meant to talk to P

Frank 26 Dec 28, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Unsupervised Learning of Multi-Frame Optical Flow with Occlusions

This is a Pytorch implementation of Janai, J., Güney, F., Ranjan, A., Black, M. and Geiger, A., Unsupervised Learning of Multi-Frame Optical Flow with

Anurag Ranjan 110 Nov 02, 2022
Music Classification: Beyond Supervised Learning, Towards Real-world Applications

Music Classification: Beyond Supervised Learning, Towards Real-world Applications

104 Dec 15, 2022
Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition

Integrated Semantic and Phonetic Post-correction for Chinese Speech Recognition | paper | dataset | pretrained detection model | Authors: Yi-Chang Che

Yi-Chang Chen 1 Aug 23, 2022
NeuralDiff: Segmenting 3D objects that move in egocentric videos

NeuralDiff: Segmenting 3D objects that move in egocentric videos Project Page | Paper + Supplementary | Video About This repository contains the offic

Vadim Tschernezki 14 Dec 05, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
[ECCV2020] Content-Consistent Matching for Domain Adaptive Semantic Segmentation

[ECCV20] Content-Consistent Matching for Domain Adaptive Semantic Segmentation This is a PyTorch implementation of CCM. News: GTA-4K list is available

Guangrui Li 88 Aug 25, 2022