An 16kHz implementation of HiFi-GAN for soft-vc.

Overview

HiFi-GAN

An 16kHz implementation of HiFi-GAN for soft-vc.

Relevant links:

Example Usage

import torch
import numpy as np

# Load checkpoint
hifigan = torch.hub.load("bshall/hifigan:main", "hifigan_hubert_soft").cuda()
# Load mel-spectrogram
mel = torch.from_numpy(np.load("path/to/mel")).unsqueeze(0).cuda()
# Generate
wav, sr = hifigan.generate(mel)

Train

Step 1: Download and extract the LJ-Speech dataset

Step 2: Resample the audio to 16kHz:

usage: resample.py [-h] [--sample-rate SAMPLE_RATE] in-dir out-dir

Resample an audio dataset.

positional arguments:
  in-dir                path to the dataset directory
  out-dir               path to the output directory

optional arguments:
  -h, --help            show this help message and exit
  --sample-rate SAMPLE_RATE
                        target sample rate (default 16kHz)

Step 3: Download the dataset splits and move them into the root of the dataset directory. After steps 2 and 3 your dataset directory should look like this:

LJSpeech-1.1
│   test.txt
│   train.txt
│   validation.txt
├───mels
└───wavs

Note: the mels directory is optional. If you want to fine-tune HiFi-GAN the mels directory should contain ground-truth aligned spectrograms from an acoustic model.

Step 4: Train HiFi-GAN:

usage: train.py [-h] [--resume RESUME] [--finetune] dataset-dir checkpoint-dir

Train or finetune HiFi-GAN.

positional arguments:
  dataset-dir      path to the preprocessed data directory
  checkpoint-dir   path to the checkpoint directory

optional arguments:
  -h, --help       show this help message and exit
  --resume RESUME  path to the checkpoint to resume from
  --finetune       whether to finetune (note that a resume path must be given)

Generate

To generate using the trained HiFi-GAN models, see Example Usage or use the generate.py script:

usage: generate.py [-h] [--model-name {hifigan,hifigan-hubert-soft,hifigan-hubert-discrete}] in-dir out-dir

Generate audio for a directory of mel-spectrogams using HiFi-GAN.

positional arguments:
  in-dir                path to directory containing the mel-spectrograms
  out-dir               path to output directory

optional arguments:
  -h, --help            show this help message and exit
  --model-name {hifigan,hifigan-hubert-soft,hifigan-hubert-discrete}
                        available models

Acknowledgements

This repo is based heavily on https://github.com/jik876/hifi-gan.

You might also like...
 Fast Soft Color Segmentation
Fast Soft Color Segmentation

Fast Soft Color Segmentation

Permute Me Softly: Learning Soft Permutations for Graph Representations

Permute Me Softly: Learning Soft Permutations for Graph Representations

Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics
[ICLR 2022] Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics

CPDeform Code and data for paper Contact Points Discovery for Soft-Body Manipulations with Differentiable Physics at ICLR 2022 (Spotlight). @InProceed

Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two
Implementation of 'lightweight' GAN, proposed in ICLR 2021, in Pytorch. High resolution image generations that can be trained within a day or two

512x512 flowers after 12 hours of training, 1 gpu 256x256 flowers after 12 hours of training, 1 gpu Pizza 'Lightweight' GAN Implementation of 'lightwe

Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GanFormer and TransGan paper

TransGanFormer (wip) Implementation of TransGanFormer, an all-attention GAN that combines the finding from the recent GansFormer and TransGan paper. I

PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting.

GAN Memory for Lifelong learning This is a pytorch implementation of the NeurIPS paper GAN Memory with No Forgetting. Please consider citing our paper

[CVPR 2021] Pytorch implementation of Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs

Hijack-GAN: Unintended-Use of Pretrained, Black-Box GANs In this work, we propose a framework HijackGAN, which enables non-linear latent space travers

Comments
  • is pretrained weight of discriminator of base model available?

    is pretrained weight of discriminator of base model available?

    Thanks for nice work. @bshall

    I'm trying to train hifigan now, but it takes so long training it from scratch using other dataset.

    If discriminator of base model is also available, I could start finetuning based on that vocoder. it seems that you released only generator. Could you also release discriminator weights?

    opened by seastar105 3
  • NaN during training when using own dataset

    NaN during training when using own dataset

    While fine-tuning works as expected, doing regular training with a dataset that isn't LJSpeech would eventually cause a NaN loss at some point. The culprit appears to be the following line, which causes a division by zero if wav happens to contain perfect silence:

    https://github.com/bshall/hifigan/blob/374a4569eae5437e2c80d27790ff6fede9fc1c46/hifigan/dataset.py#L106

    I'm not sure what the best solution for this would be, as a quick fix I simply clipped the divisor so it can't reach zero:

    wav = flip * gain * wav / max([wav.abs().max(), 0.001])
    
    opened by cjay42 0
  • How to use this Vocoder with your Tacotron?

    How to use this Vocoder with your Tacotron?

    Thank you for your work. I used your Tacotron in your Universal Vocoding.The quality of the speech is excellent. However, the inference speed is slow. for that reason, I would like to use this hifigan as a vocoder. But Tacotron's n_mel is 80, while hifigan's n_mel is 128. How to use hifigan with Tacotron?

    opened by gheyret 0
Owner
Benjamin van Niekerk
PhD student at Stellenbosch University. Interested in speech and audio technology.
Benjamin van Niekerk
HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps.

HMLLDB is a collection of LLDB commands to assist in the debugging of iOS apps. 中文介绍 Features Non-intrusive. Your iOS project does not need to be modi

mao2020 47 Oct 22, 2022
NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

NanoDet-Plus⚡Super fast and lightweight anchor-free object detection model. 🔥Only 980 KB(int8) / 1.8MB (fp16) and run 97FPS on cellphone🔥

4.8k Jan 07, 2023
A Tensorfflow implementation of Attend, Infer, Repeat

Attend, Infer, Repeat: Fast Scene Understanding with Generative Models This is an unofficial Tensorflow implementation of Attend, Infear, Repeat (AIR)

Adam Kosiorek 82 May 27, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
Official code for our CVPR '22 paper "Dataset Distillation by Matching Training Trajectories"

Dataset Distillation by Matching Training Trajectories Project Page | Paper This repo contains code for training expert trajectories and distilling sy

George Cazenavette 256 Jan 05, 2023
General Multi-label Image Classification with Transformers

General Multi-label Image Classification with Transformers Jack Lanchantin, Tianlu Wang, Vicente Ordóñez Román, Yanjun Qi Conference on Computer Visio

QData 154 Dec 21, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Medical image analysis framework merging ANTsPy and deep learning

ANTsPyNet A collection of deep learning architectures and applications ported to the python language and tools for basic medical image processing. Bas

Advanced Normalization Tools Ecosystem 118 Dec 24, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
One Million Scenes for Autonomous Driving

ONCE Benchmark This is a reproduced benchmark for 3D object detection on the ONCE (One Million Scenes) dataset. The code is mainly based on OpenPCDet.

148 Dec 28, 2022
ColossalAI-Examples - Examples of training models with hybrid parallelism using ColossalAI

ColossalAI-Examples This repository contains examples of training models with Co

HPC-AI Tech 185 Jan 09, 2023
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Implementation of Convolutional enhanced image Transformer

CeiT : Convolutional enhanced image Transformer This is an unofficial PyTorch implementation of Incorporating Convolution Designs into Visual Transfor

Rishikesh (ऋषिकेश) 82 Dec 13, 2022
Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper

LEXA Benchmark Codebase for the self-supervised goal reaching benchmark introduced in the LEXA paper (Discovering and Achieving Goals via World Models

Oleg Rybkin 36 Dec 22, 2022
[NeurIPS 2020] Official repository for the project "Listening to Sound of Silence for Speech Denoising"

Listening to Sounds of Silence for Speech Denoising Introduction This is the repository of the "Listening to Sounds of Silence for Speech Denoising" p

Henry Xu 40 Dec 20, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
PyTorch implementation for STIN

STIN This repository contains PyTorch implementation for STIN. Abstract: In single-photon LiDAR, photon-efficient imaging captures the 3D structure of

Yiweins 2 Nov 22, 2022
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022