Jaxtorch (a jax nn library)

Related tags

Deep Learningjaxtorch
Overview

Jaxtorch (a jax nn library)

This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular jax frameworks (flax, haiku).

The objective is to enable pytorch-like model definition and training with a minimum of magic. Simple example:

import jax
import jax.numpy as jnp
import jaxlib
import jaxtorch

# Modules are just classes that inherit jaxtorch.Module
class Linear(jaxtorch.Module):
    # They can accept any constructor parameters
    def __init__(self, in_features: int, out_features: int, bias: bool = True):
        super().__init__()
        # Parameters are represented by a Param type, which identifies
        # them, and specifies how to initialize them.
        self.weight = jaxtorch.init.glorot_normal(out_features, in_features)
        assert type(self.weight) is jaxtorch.Param
        if bias:
            self.bias = jaxtorch.init.zeros(out_features)
        else:
            self.bias = None

    # The forward function accepts cx, a Context object as the first argument
    # always. This provides random number generation as well as the parameters.
    def forward(self, cx: jaxtorch.Context, x):
        # Parameters are looked up in the context using the stored identifier.
        y = x @ jnp.transpose(cx[self.weight])
        if self.bias:
            y = y + cx[self.bias]
        return y

model = Linear(3, 3)

# You initialize the weights by passing a RNG key.
# Calling init_weights also names all the parameters in the Module tree.
params = model.init_weights(jax.random.PRNGKey(0))

# Parameters are stored in a dictionary by name.
assert type(params) is dict
assert type(params[model.weight.name]) is jaxlib.xla_extension.DeviceArray
assert model.weight.name == 'weight'

def loss(params, key):
    cx = jaxtorch.Context(params, key)
    x = jnp.array([1.0,2.0,3.0])
    y = jnp.array([4.0,5.0,6.0])
    return jnp.mean((model(cx, x) - y)**2)
f_grad = jax.value_and_grad(loss)

for _ in range(100):
    (loss, grad) = f_grad(params, jax.random.PRNGKey(0))
    params = jax.tree_util.tree_map(lambda p, g: p - 0.01 * g, params, grad)
print(loss)
# 4.7440533e-08
Owner
nshepperd
nshepperd
This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Mesa: A Memory-saving Training Framework for Transformers This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for

Zhuang AI Group 105 Dec 06, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Contributors of this repo: Zhibo Zhang ( Zhibo (Darren) Zhang 18 Nov 01, 2022

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Nicholas Lee 3 Jan 09, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
Code and data for paper "Deep Photo Style Transfer"

deep-photo-styletransfer Code and data for paper "Deep Photo Style Transfer" Disclaimer This software is published for academic and non-commercial use

Fujun Luan 9.9k Dec 29, 2022
UMPNet: Universal Manipulation Policy Network for Articulated Objects

UMPNet: Universal Manipulation Policy Network for Articulated Objects Zhenjia Xu, Zhanpeng He, Shuran Song Columbia University Robotics and Automation

Columbia Artificial Intelligence and Robotics Lab 33 Dec 03, 2022
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Deep learning toolbox based on PyTorch for hyperspectral data classification.

Deep learning toolbox based on PyTorch for hyperspectral data classification.

Nicolas 304 Dec 28, 2022
DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

DeOldify - A Deep Learning based project for colorizing and restoring old images (and video!)

Jason Antic 15.8k Jan 04, 2023
State-of-the-art language models can match human performance on many tasks

Status: Archive (code is provided as-is, no updates expected) Grade School Math [Blog Post] [Paper] State-of-the-art language models can match human p

OpenAI 259 Jan 08, 2023
PaddleViT: State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 2.0+

PaddlePaddle Vision Transformers State-of-the-art Visual Transformer and MLP Models for PaddlePaddle 🤖 PaddlePaddle Visual Transformers (PaddleViT or

1k Dec 28, 2022
BankNote-Net: Open dataset and encoder model for assistive currency recognition

BankNote-Net: Open Dataset for Assistive Currency Recognition Millions of people around the world have low or no vision. Assistive software applicatio

Microsoft 13 Oct 28, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach

This repository holds the implementation for paper Towards Open-World Feature Extrapolation: An Inductive Graph Learning Approach Download our preproc

Qitian Wu 42 Dec 27, 2022
Custom Implementation of Non-Deep Networks

ParNet Custom Implementation of Non-deep Networks arXiv:2110.07641 Ankit Goyal, Alexey Bochkovskiy, Jia Deng, Vladlen Koltun Official Repository https

Pritama Kumar Nayak 20 May 27, 2022