The code release of paper Low-Light Image Enhancement with Normalizing Flow

Related tags

Deep LearningLLFlow
Overview

PWC

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow

Paper | Project Page

Low-Light Image Enhancement with Normalizing Flow
Yufei Wang, Renjie Wan, Wenhan Yang, Haoliang Li, Lap-pui Chau, Alex C. Kot
In AAAI'2022

Overall

Framework

Quantitative results

Evaluation on LOL

The evauluation results on LOL are as follows

Method PSNR SSIM LPIPS
LIME 16.76 0.56 0.35
RetinexNet 16.77 0.56 0.47
DRBN 20.13 0.83 0.16
Kind 20.87 0.80 0.17
KinD++ 21.30 0.82 0.16
LLFlow (Ours) 25.19 0.93 0.11

Computational Cost

Computational Cost The computational cost and performance of models are in the above table. We evaluate the cost using one image with a size 400×600. Ours(large) is the standard model reported in supplementary and Ours(small) is a model with reduced parameters. Both the training config files and pre-trained models are provided.

Visual Results

Visual comparison with state-of-the-art low-light image enhancement methods on LOL dataset.

Get Started

Dependencies and Installation

  • Python 3.8
  • Pytorch 1.9
  1. Clone Repo
git clone https://github.com/wyf0912/LLFlow.git
  1. Create Conda Environment
conda create --name LLFlow python=3.8
conda activate LLFlow
  1. Install Dependencies
cd LLFlow
pip install -r requirements.txt

Pretrained Model

We provide the pre-trained models with the following settings:

  • A light weight model with promising performance trained on LOL [Google drive] with training config file ./confs/LOL_smallNet.yml
  • A standard-sized model trained on LOL [Google drive] with training config file ./confs/LOL-pc.yml.
  • A standard-sized model trained on VE-LOL [Google drive] with training config file ./confs/LOLv2-pc.yml.

Test

You can check the training log to obtain the performance of the model. You can also directly test the performance of the pre-trained model as follows

  1. Modify the paths to dataset and pre-trained mode. You need to modify the following path in the config files in ./confs
#### Test Settings
dataroot_GT # only needed for testing with paired data
dataroot_LR
model_path
  1. Test the model

To test the model with paired data and obtain the evaluation results, e.g., PSNR, SSIM, and LPIPS.

python test.py --opt your_config_path
# You need to specify an appropriate config file since it stores the config of the model, e.g., the number of layers.

To test the model with unpaired data

python test_unpaired.py --opt your_config_path
# You need to specify an appropriate config file since it stores the config of the model, e.g., the number of layers.

You can check the output in ../results.

Train

All logging files in the training process, e.g., log message, checkpoints, and snapshots, will be saved to ./experiments.

  1. Modify the paths to dataset in the config yaml files. We provide the following training configs for both LOL and VE-LOL benchmarks. You can also create your own configs for your own dataset.
.\confs\LOL_smallNet.yml
.\confs\LOL-pc.yml
.\confs\LOLv2-pc.yml

You need to modify the following terms

datasets.train.root
datasets.val.root
gpu_ids: [0] # Our model can be trained using a single GPU with memory>20GB. You can also train the model using multiple GPUs by adding more GPU ids in it.
  1. Train the network.
python train.py --opt your_config_path

Citation

If you find our work useful for your research, please cite our paper

@article{wang2021low,
  title={Low-Light Image Enhancement with Normalizing Flow},
  author={Wang, Yufei and Wan, Renjie and Yang, Wenhan and Li, Haoliang and Chau, Lap-Pui and Kot, Alex C},
  journal={arXiv preprint arXiv:2109.05923},
  year={2021}
}

Contact

If you have any question, please feel free to contact us via [email protected].

Owner
Yufei Wang
PhD student @ Nanyang Technological University
Yufei Wang
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
Re-implementation of 'Grokking: Generalization beyond overfitting on small algorithmic datasets'

Re-implementation of the paper 'Grokking: Generalization beyond overfitting on small algorithmic datasets' Paper Original paper can be found here Data

Tom Lieberum 38 Aug 09, 2022
Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image

Inverse Rendering for Complex Indoor Scenes: Shape, Spatially-Varying Lighting and SVBRDF From a Single Image (Project page) Zhengqin Li, Mohammad Sha

209 Jan 05, 2023
💊 A 3D Generative Model for Structure-Based Drug Design (NeurIPS 2021)

A 3D Generative Model for Structure-Based Drug Design Coming soon... Citation @inproceedings{luo2021sbdd, title={A 3D Generative Model for Structu

Shitong Luo 118 Jan 05, 2023
Metadata-Extractor - Metadata Extractor Script can be used to read in exif metadata

Metadata Extractor The exifextract script can be used to read in exif metadata f

1 Feb 16, 2022
SAMO: Streaming Architecture Mapping Optimisation

SAMO: Streaming Architecture Mapping Optimiser The SAMO framework provides a method of optimising the mapping of a Convolutional Neural Network model

Alexander Montgomerie-Corcoran 20 Dec 10, 2022
LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection.

LightLog Introduction LightLog is an open source deep learning based lightweight log analysis tool for log anomaly detection. Function description [BG

25 Dec 17, 2022
Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface

pyRiemann pyRiemann is a python package for covariance matrices manipulation and classification through Riemannian geometry. The primary target is cla

447 Jan 05, 2023
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
Official code of Team Yao at Multi-Modal-Fact-Verification-2022

Official code of Team Yao at Multi-Modal-Fact-Verification-2022 A Multi-Modal Fact Verification dataset released as part of the De-Factify workshop in

Wei-Yao Wang 11 Nov 15, 2022
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking

Probabilistic Tracklet Scoring and Inpainting for Multiple Object Tracking (CVPR 2021) Pytorch implementation of the ArTIST motion model. In this repo

Fatemeh 38 Dec 12, 2022
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022
The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks

The Implicit Bias of Gradient Descent on Generalized Gated Linear Networks This folder contains the code to reproduce the data in "The Implicit Bias o

Samuel Lippl 0 Feb 05, 2022