PoseCamera is python based SDK for human pose estimation through RGB webcam.

Overview

PoseCamera

PyPI version PoseCamera Actions Status CodeFactor

PoseCamera is python based SDK for human pose estimation through RGB webcam.

Install

install posecamera package through pip

pip install posecamera

If you are having issues with the installation on Windows OS then check this page

Usage

See Google colab notebook https://colab.research.google.com/drive/1pzsgxaz1ZVesh_j-96PBak_OQKP19HHA?usp=sharing

draw pose keypoints on image

import posecamera
import cv2

det = posecamera.pose_tracker.PoseTracker()

image = cv2.imread("example.jpg")

pose = det(image)
for name, (y, x, score) in pose.keypoints.items():
    cv2.circle(image, (int(x), int(y)), 4, (255, 0, 0), -1)


cv2.imshow("PoseCamera", image)
cv2.waitKey(0)

output of the above example

or get keypoints array

for pose in poses:
    keypoints = pose.keypoints

Handtracker

import posecamera
import cv2
det = posecamera.hand_tracker.HandTracker()

image = cv2.imread("tmp/hands.jpg")
keypoints, bbox = det(image)

for hand_keypoints in keypoints:
    for (x, y) in hand_keypoints:
        cv2.circle(image, (int(x), int(y)), 3, (255, 0, 0), -1)

cv2.imshow("PoseCamera - Hand Tracking", image)
cv2.waitKey(0)

Using Docker

The official docker image is hosted on Docker Hub. The very first step is to install the docker docker on your system.

Also note that your Nvidia driver Needs to be compatible with CUDA10.2.

Doing inference on live webcam feed.

xhost +; docker run --name posecamera --rm --net=host --gpus all -e DISPLAY=$DISPLAY --device=/dev/video0:/dev/video0 wondertree/posecamera --video=0

GPU & Webcam support (if running docker) is not available on Windows Operating System.

To run inference on images use the following command.

docker run --name posecamera --rm --net=host -e DISPLAY=$DISPLAY  wondertree/posecamera --images ./tmp/female_pose.jpg --cpu

For more details read our Docs

The base of this repository is based on the following research paper.

@inproceedings{osokin2018lightweight_openpose,
    author={Osokin, Daniil},
    title={Real-time 2D Multi-Person Pose Estimation on CPU: Lightweight OpenPose},
    booktitle = {arXiv preprint arXiv:1811.12004},
    year = {2018}
}

The base of hand tracking is based on the following repository : https://google.github.io/mediapipe/solutions/hands

Share your thoughts

Join our Discussion Channel! We love to hear your ideas, suggestions or pull request

Temporally Coherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Duc Linh Nguyen 2 Jan 18, 2022
CLIP: Connecting Text and Image (Learning Transferable Visual Models From Natural Language Supervision)

CLIP (Contrastive Language–Image Pre-training) Experiments (Evaluation) Model Dataset Acc (%) ViT-B/32 (Paper) CIFAR100 65.1 ViT-B/32 (Our) CIFAR100 6

Myeongjun Kim 52 Jan 07, 2023
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023
All public open-source implementations of convnets benchmarks

convnet-benchmarks Easy benchmarking of all public open-source implementations of convnets. A summary is provided in the section below. Machine: 6-cor

Soumith Chintala 2.7k Dec 30, 2022
Neural Point-Based Graphics

Neural Point-Based Graphics Project   Video   Paper Neural Point-Based Graphics Kara-Ali Aliev1 Artem Sevastopolsky1,2 Maria Kolos1,2 Dmitry Ulyanov3

Ali Aliev 252 Dec 13, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
This git repo contains the implementation of my ML project on Heart Disease Prediction

Introduction This git repo contains the implementation of my ML project on Heart Disease Prediction. This is a real-world machine learning model/proje

Aryan Dutta 1 Feb 02, 2022
The CLRS Algorithmic Reasoning Benchmark

Learning representations of algorithms is an emerging area of machine learning, seeking to bridge concepts from neural networks with classical algorithms.

DeepMind 251 Jan 05, 2023
[内测中]前向式Python环境快捷封装工具,快速将Python打包为EXE并添加CUDA、NoAVX等支持。

QPT - Quick packaging tool 快捷封装工具 GitHub主页 | Gitee主页 QPT是一款可以“模拟”开发环境的多功能封装工具,最短只需一行命令即可将普通的Python脚本打包成EXE可执行程序,并选择性添加CUDA和NoAVX的支持,尽可能兼容更多的用户环境。 感觉还可

QPT Family 545 Dec 28, 2022
Code for our CVPR 2021 Paper "Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes".

Rethinking Style Transfer: From Pixels to Parameterized Brushstrokes (CVPR 2021) Project page | Paper | Colab | Colab for Drawing App Rethinking Style

CompVis Heidelberg 153 Jan 04, 2023
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

Useful materials and tutorials for 110-1 NTU DBME5028 (Application of Deep Learning in Medical Imaging)

7 Jun 22, 2022
Moment-DETR code and QVHighlights dataset

Moment-DETR QVHighlights: Detecting Moments and Highlights in Videos via Natural Language Queries Jie Lei, Tamara L. Berg, Mohit Bansal For dataset de

Jie Lei 雷杰 133 Dec 22, 2022
“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品

“袋鼯麻麻——智能购物平台”能够精准地定位识别每一个商品,并且能够返回完整地购物清单及顾客应付的实际商品总价格,极大地降低零售行业实际运营过程中巨大的人力成本,提升零售行业无人化、自动化、智能化水平。

thomas-yanxin 192 Jan 05, 2023
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Phil Wang 40 Dec 22, 2022