Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Overview

Industrial KNN-based Anomaly Detection

โญ Now has streamlit support! โญ Run $ streamlit run streamlit_app.py

This repo aims to reproduce the results of the following KNN-based anomaly detection methods:

  1. SPADE (Cohen et al. 2021) - knn in z-space and distance to feature maps spade schematic
  2. PaDiM* (Defard et al. 2020) - distance to multivariate Gaussian of feature maps padim schematic
  3. PatchCore (Roth et al. 2021) - knn distance to avgpooled feature maps patchcore schematic

* actually does not have any knn mechanism, but shares many things implementation-wise.


Install

$ pipenv install -r requirements.txt

Note: I used torch cu11 wheels.

Usage

CLI:

$ python indad/run.py METHOD [--dataset DATASET]

Results can be found under ./results/.

Code example:

from indad.model import SPADE

model = SPADE(k=5, backbone_name="resnet18")

# feed healthy dataset
model.fit(...)

# get predictions
img_lvl_anom_score, pxl_lvl_anom_score = model.predict(...)

Custom datasets

๐Ÿ‘๏ธ

Check out one of the downloaded MVTec datasets. Naming of images should correspond among folders. Right now there is no support for no ground truth pixel masks.

๐Ÿ“‚datasets
 โ”— ๐Ÿ“‚your_custom_dataset
  โ”ฃ ๐Ÿ“‚ ground_truth/defective
  โ”ƒ โ”ฃ ๐Ÿ“‚ defect_type_1
  โ”ƒ โ”— ๐Ÿ“‚ defect_type_2
  โ”ฃ ๐Ÿ“‚ test
  โ”ƒ โ”ฃ ๐Ÿ“‚ defect_type_1
  โ”ƒ โ”ฃ ๐Ÿ“‚ defect_type_2
  โ”ƒ โ”— ๐Ÿ“‚ good
  โ”— ๐Ÿ“‚ train/good
$ python indad/run.py METHOD --dataset your_custom_dataset

Results

๐Ÿ“ = paper, ๐Ÿ‘‡ = this repo

Image-level

class SPADE ๐Ÿ“ SPADE ๐Ÿ‘‡ PaDiM ๐Ÿ“ PaDiM ๐Ÿ‘‡ PatchCore ๐Ÿ“ PatchCore ๐Ÿ‘‡
bottle - 98.3 98.3 99.9 100.0 100.0
cable - 88.1 96.7 87.8 99.5 96.2
capsule - 80.4 98.5 87.6 98.1 95.3
carpet - 62.5 99.1 99.5 98.7 98.7
grid - 25.6 97.3 95.5 98.2 93.0
hazelnut - 92.8 98.2 86.1 100.0 100.0
leather - 85.6 99.2 100.0 100.0 100.0
metal_nut - 78.6 97.2 97.6 100.0 98.3
pill - 78.8 95.7 92.7 96.6 92.8
screw - 66.1 98.5 79.6 98.1 96.7
tile - 96.4 94.1 99.5 98.7 99.0
toothbrush - 83.9 98.8 94.7 100.0 98.1
transistor - 89.4 97.5 95.0 100.0 99.7
wood - 85.3 94.7 99.4 99.2 98.8
zipper - 97.1 98.5 93.8 99.4 98.4
averages 85.5 80.6 97.5 93.9 99.1 97.7

Pixel-level

class SPADE ๐Ÿ“ SPADE ๐Ÿ‘‡ PaDiM ๐Ÿ“ PaDiM ๐Ÿ‘‡ PatchCore ๐Ÿ“ PatchCore ๐Ÿ‘‡
bottle 97.5 97.7 94.8 97.6 98.6 97.8
cable 93.7 94.4 88.8 95.5 98.5 97.4
capsule 97.6 98.7 93.5 98.1 98.9 98.3
carpet 87.4 99.0 96.2 98.7 99.1 98.3
grid 88.5 96.4 94.6 96.4 98.7 96.7
hazelnut 98.4 98.4 92.6 97.3 98.7 98.1
leather 97.2 99.1 97.8 98.6 99.3 98.4
metal_nut 99.0 96.1 85.6 95.8 98.4 96.2
pill 99.1 93.5 92.7 94.4 97.6 98.7
screw 98.1 98.9 94.4 97.5 99.4 98.4
tile 96.5 93.1 86.0 92.6 95.9 94.0
toothbrush 98.9 98.9 93.1 98.5 98.7 98.1
transistor 97.9 95.8 84.5 96.9 96.4 97.5
wood 94.1 94.5 91.1 92.9 95.1 91.9
zipper 96.5 98.3 95.9 97.0 98.9 97.6
averages 96.9 96.6 92.1 96.5 98.1 97.2

PatchCore-10 was used.

Hyperparams

The following parameters were used to calculate the results. They more or less correspond to the parameters used in the papers.

spade:
  backbone: wide_resnet50_2
  k: 50
padim:
  backbone: wide_resnet50_2
  d_reduced: 250
  epsilon: 0.04
patchcore:
  backbone: wide_resnet50_2
  f_coreset: 0.1
  n_reweight: 3

Progress

  • Datasets
  • Code skeleton
  • Config files
  • CLI
  • Logging
  • SPADE
  • PADIM
  • PatchCore
  • Add custom dataset option
  • Add dataset progress bar
  • Add schematics
  • Unit tests

Design considerations

  • Data is processed in single images to avoid batch statistics interference.
  • I decided to implement greedy kcenter from scratch and there is room for improvement.
  • torch.nn.AdaptiveAvgPool2d for feature map resizing, torch.nn.functional.interpolate for score map resizing.
  • GPU is used for backbones and coreset selection. GPU coreset selection currently runs at:
    • 400-500 it/s @ float32 (RTX3080)
    • 1000+ it/s @ float16 (RTX3080)

Acknowledgements

  • hcw-00 for tipping sklearn.random_projection.SparseRandomProjection

References

SPADE:

@misc{cohen2021subimage,
      title={Sub-Image Anomaly Detection with Deep Pyramid Correspondences}, 
      author={Niv Cohen and Yedid Hoshen},
      year={2021},
      eprint={2005.02357},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

PaDiM:

@misc{defard2020padim,
      title={PaDiM: a Patch Distribution Modeling Framework for Anomaly Detection and Localization}, 
      author={Thomas Defard and Aleksandr Setkov and Angelique Loesch and Romaric Audigier},
      year={2020},
      eprint={2011.08785},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

PatchCore:

@misc{roth2021total,
      title={Towards Total Recall in Industrial Anomaly Detection}, 
      author={Karsten Roth and Latha Pemula and Joaquin Zepeda and Bernhard Schรถlkopf and Thomas Brox and Peter Gehler},
      year={2021},
      eprint={2106.08265},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
Owner
aventau
Into graphics and modelling. Computer Vision / Machine Learning Engineer.
aventau
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
DI-HPC is an acceleration operator component for general algorithm modules in reinforcement learning algorithms

DI-HPC: Decision Intelligence - High Performance Computation DI-HPC is an acceleration operator component for general algorithm modules in reinforceme

OpenDILab 185 Dec 29, 2022
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning

Audio Domain Adaptation for Acoustic Scene Classification using Disentanglement Learning Reference AbeรŸer, J. & Mรผller, M. Towards Audio Domain Adapt

Jakob AbeรŸer 2 Jul 06, 2022
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer โœจ โœจ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
Flow is a computational framework for deep RL and control experiments for traffic microsimulation.

Flow Flow is a computational framework for deep RL and control experiments for traffic microsimulation. See our website for more information on the ap

867 Jan 02, 2023
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track.

ISC21-Descriptor-Track-1st The 1st Place Solution of the Facebook AI Image Similarity Challenge (ISC21) : Descriptor Track. You can check our solution

lyakaap 73 Dec 24, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
PyTorch Implementation of "Light Field Image Super-Resolution with Transformers"

LFT PyTorch implementation of "Light Field Image Super-Resolution with Transformers", arXiv 2021. [pdf]. Contributions: We make the first attempt to a

Squidward 62 Nov 28, 2022
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambig

็Ž‹็š“ๆณข 147 Jan 07, 2023
A Pythonic library for Nvidia Codec.

A Pythonic library for Nvidia Codec. The project is still in active development; expect breaking changes. Why another Python library for Nvidia Codec?

Zesen Qian 12 Dec 27, 2022
Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2

CoaDTI Multi-modal co-attention for drug-target interaction annotation and Its Application to SARS-CoV-2 Abstract Environment The test was conducted i

Layne_Huang 7 Nov 14, 2022
The official repo for OC-SORT: Observation-Centric SORT on video Multi-Object Tracking. OC-SORT is simple, online and robust to occlusion/non-linear motion.

OC-SORT Observation-Centric SORT (OC-SORT) is a pure motion-model-based multi-object tracker. It aims to improve tracking robustness in crowded scenes

Jinkun Cao 325 Jan 05, 2023
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression KullanacaฤŸฤฑmฤฑz veri seti Carnegie Mellon รœniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sรถren Kohnert 0 Dec 06, 2021
Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness

Imbalanced Gradients: A Subtle Cause of Overestimated Adversarial Robustness Code for Paper "Imbalanced Gradients: A Subtle Cause of Overestimated Adv

Hanxun Huang 11 Nov 30, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022