Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Overview

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

1. Classification Task

PyTorch implementation of DisturbLabel: Regularizing CNN on the Loss Layer [CVPR 2016] extended with Directional DisturbLabel method.

This classification code is built on top of https://github.com/amirhfarzaneh/disturblabel-pytorch/blob/master/README.md project and utilizes implementation from ResNet 18 from https://github.com/huyvnphan/PyTorch_CIFAR10

Directional DisturbLabel

  if args.mode == 'ddl' or args.mode == 'ddldr':
      out = F.softmax(output, dim=1)
      norm = torch.norm(out, dim=1)
      out = out / norm[:, None]
      idx = []
      for i in range(len(out)):
          if out[i,target[i]] > .5:
              idx.append(i)
              
      if len(idx) > 0:
          target[idx] = disturb(target[idx]).to(device) 

Usage

python main_ddl.py --mode=dl --alpha=20

Most important arguments

--dataset - which data to use

Possible values:

value dataset
MNIST MNIST
FMNIST Fashion MNIST
CIFAR10 CIFAR-10
CIFAR100 CIFAR-100
ART Art Images: Drawing/Painting/Sculptures/Engravings
INTEL Intel Image Classification

Default: MNIST

-- mode - regularization method applied

Possible values:

value method
noreg Without any regularization
dl Vanilla DistrubLabel
ddl Directional DisturbLabel
dropout Dropout
dldr DistrubLabel+Dropout
ddldl Directional DL+Dropout

Default: ddl

--alpha - alpha for vanilla Distrub label and Directional DisturbLabel

Possible values: int from 0 to 100. Default: 20

--epochs - number of training epochs

Default: 100

2. Regression Task

DisturbValue

def noise_generator(x, alpha):
    noise = torch.normal(0, 1e-8, size=(len(x), 1))
    noise[torch.randint(0, len(x), (int(len(x)*(1-alpha)),))] = 0

    return noise

DisturbError

def disturberror(outputs, values):
    epsilon = 1e-8
    e = values - outputs
    for i in range(len(e)):
        if (e[i] < epsilon) & (e[i] >= 0):
            values[i] = values[i] + e[i] / 4
        elif (e[i] > -epsilon) & (e[i] < 0):
            values[i] = values[i] - e[i] / 4

    return values

Datasets

  1. Boston: 506 instances, 13 features
  2. Bike Sharing: 731 instances, 13 features
  3. Air Quality(AQ): 9357 instances, 10 features
  4. make_regression(MR): 5000 instances, 30 features (random sample for regression)
  5. Housing Price - Kaggle(HP): 1460 instances, 81 features
  6. Student Performance (SP): 649 instances, 13 features (20 - categorical were dropped)
  7. Superconductivity Dataset (SD): 21263 instances, 81 features
  8. Communities & Crime (CC): 1994 instances, 100 features
  9. Energy Prediction (EP): 19735 instancies, 27 features

Experiment Setting

Model: MLP which has 3 hidden layers

Result: Averaged over 20 runs

Hyperparameters: Using grid search options

Usage

python main_new.py --de y --dataset "bike" --dv_annealing y --epoch 100 --T 80
python main_new.py --de y --dv y --dataset "bike" -epoch 100
python main_new.py --de y --l2 y --dataset "air" -epoch 100
python main_new.py --dv y --dv_annealing y --dataset "air" -epoch 100 #for annealing setting dv should be "y"

--dataset: 'bike', 'air', 'boston', 'housing', 'make_sklearn', 'superconduct', 'energy', 'crime', 'students'
--dropout, --dv(disturbvalue), --de(disturberror), --l2, --dv_annealing: (string) y / n
--lr: (float)
--batch_size, --epoch, --T(cos annealing T): (int)
-- default dv_annealing: alpha_min = 0.05, alpha_max = 0.12, T_i = 80
Owner
Yongho Kim
Research Assistant
Yongho Kim
Meta Language-Specific Layers in Multilingual Language Models

Meta Language-Specific Layers in Multilingual Language Models This repo contains the source codes for our paper On Negative Interference in Multilingu

Zirui Wang 20 Feb 13, 2022
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
2 Jul 19, 2022
Python implementation of "Multi-Instance Pose Networks: Rethinking Top-Down Pose Estimation"

MIPNet: Multi-Instance Pose Networks This repository is the official pytorch python implementation of "Multi-Instance Pose Networks: Rethinking Top-Do

Rawal Khirodkar 57 Dec 12, 2022
This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637

This repository contains the code for the binaural-detection model used in the publication arXiv:2111.04637 Dependencies The model depends on the foll

Jörg Encke 2 Oct 14, 2022
A flexible framework of neural networks for deep learning

Chainer: A deep learning framework Website | Docs | Install Guide | Tutorials (ja) | Examples (Official, External) | Concepts | ChainerX Forum (en, ja

Chainer 5.8k Jan 06, 2023
Make your AirPlay devices as TTS speakers

Apple AirPlayer Home Assistant integration component, make your AirPlay devices as TTS speakers. Before Use 2021.6.X or earlier Apple Airplayer compon

George Zhao 117 Dec 15, 2022
[NAACL & ACL 2021] SapBERT: Self-alignment pretraining for BERT.

SapBERT: Self-alignment pretraining for BERT This repo holds code for the SapBERT model presented in our NAACL 2021 paper: Self-Alignment Pretraining

Cambridge Language Technology Lab 104 Dec 07, 2022
Code for Universal Semi-Supervised Semantic Segmentation models paper accepted in ICCV 2019

USSS_ICCV19 Code for Universal Semi Supervised Semantic Segmentation accepted to ICCV 2019. Full Paper available at https://arxiv.org/abs/1811.10323.

Tarun K 68 Nov 24, 2022
Implementations of CNNs, RNNs, GANs, etc

Tensorflow Programs and Tutorials This repository will contain Tensorflow tutorials on a lot of the most popular deep learning concepts. It'll also co

Adit Deshpande 1k Dec 30, 2022
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
MiraiML: asynchronous, autonomous and continuous Machine Learning in Python

MiraiML Mirai: future in japanese. MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage. Usage In

Arthur Paulino 25 Jul 27, 2022
Dynamics-aware Adversarial Attack of 3D Sparse Convolution Network

Leaded Gradient Method (LGM) This repository contains the PyTorch implementation for paper Dynamics-aware Adversarial Attack of 3D Sparse Convolution

An Tao 2 Oct 18, 2022
The repo of the preprinting paper "Labels Are Not Perfect: Inferring Spatial Uncertainty in Object Detection"

Inferring Spatial Uncertainty in Object Detection A teaser version of the code for the paper Labels Are Not Perfect: Inferring Spatial Uncertainty in

ZINING WANG 21 Mar 03, 2022
Semi-supervised semantic segmentation needs strong, varied perturbations

Semi-supervised semantic segmentation using CutMix and Colour Augmentation Implementations of our papers: Semi-supervised semantic segmentation needs

146 Dec 20, 2022
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
A tutorial on training a DarkNet YOLOv4 model for the CrowdHuman dataset

YOLOv4 CrowdHuman Tutorial This is a tutorial demonstrating how to train a YOLOv4 people detector using Darknet and the CrowdHuman dataset. Table of c

JK Jung 118 Nov 10, 2022
Official Implementation of "Third Time's the Charm? Image and Video Editing with StyleGAN3" https://arxiv.org/abs/2201.13433

Third Time's the Charm? Image and Video Editing with StyleGAN3 Yuval Alaluf*, Or Patashnik*, Zongze Wu, Asif Zamir, Eli Shechtman, Dani Lischinski, Da

531 Dec 20, 2022
Simple transformer model for CIFAR10

CIFAR-Transformer Simple transformer model for CIFAR10. Reference: https://www.tensorflow.org/text/tutorials/transformer https://github.com/huggingfac

9 Nov 07, 2022