CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

Overview

M-BERT-Study

CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

Motivation

Multilingual BERT (M-BERT) has shown surprising cross lingual abilities --- even when it is trained without cross lingual objectives. In this work, we analyze what causes this multilinguality from three factors: linguistic properties of the languages, the architecture of the model, and the learning objectives.

Results

Linguistic properties:

  • Code switching text (word-piece overlap) is not the main cause of multilinguality.
  • Word ordering is crucial, when words in sentences are randomly permuted, multilinguality is low, however, still significantly better than random.
  • (Unigram) word frequency is not enough, as we resampled all words with the same frequency, and found almost random performance. Combining the second and the third property infers that there is language similarity other than ordering of words between two languages, and which unigram frequency does not capture. We hypothesize that it may be similarity of n-gram occurrences.

Architecture:

  • Depth of the transformer is the most important.
  • Number of attention heads effects the absolute performance on individual languages, but the gap between in-language supervision and cross-language zero-shot learning didn't change much.
  • Total number of parameters, like depth, effects multilinguality.

Learning Objectives:

  • Next Sentence Prediction objective, when removed, leads to slight increase in performance.
  • Even marking sentences in languages with language-ids, allowing BERT to know exactly which language its learning on, did not hurt performance
  • Using word-pieces leads to strong improvements on both source and target language (likely to depend on tasks) and slight improvement cross-lingually comparing to word or character based models.

Please refer to our paper for more details.

Scripts

Creating pre-training data

If you would like to pre-train a BERT with Fake language/permuted sentences, see preprocessing-scripts for how to create the tfrecords for BERT training.

Pre-training BERT

Once you have uploaded the tfrecords to google cloud, you can set up an instance and start BERT training via bert-running-scripts.

Evaluating

With models we provide or just trained, we provide code for evaluating on two tasks, NER and entailment. See evaluating-scripts.

BERT Models

We release the following bert models (in a few days):

  • Word-piece Experiments
  • Word Order Experiments
  • Word Frequency Experiments
  • Model Structure Experiments

See data for detailed paths to download (in a few days).

Requirements

  • allennlp: 0.9.0
  • ccg_nlpy

Citation

Please cite the following paper if you find our paper useful. Thanks!

Karthikeyan K, Zihan Wang, Stephen Mayhew, Dan Roth. "Cross-Lingual Ability of Multilingual BERT: An Empirical Study" arXiv preprint arXiv:1912.07840 (2019).

@article{wang2019cross,
  title={Cross-Lingual Ability of Multilingual BERT: An Empirical Study},
  author={K, Karthikeyan and Wang, Zihan and Mayhew, Stephen and Roth, Dan},
  journal={arXiv preprint arXiv:1912.07840},
  year={2019}
}
Owner
CogComp
Cognitive Computation Group, led by Prof. Dan Roth
CogComp
TransVTSpotter: End-to-end Video Text Spotter with Transformer

TransVTSpotter: End-to-end Video Text Spotter with Transformer Introduction A Multilingual, Open World Video Text Dataset and End-to-end Video Text Sp

weijiawu 66 Dec 26, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
Repository for "Toward Practical Monocular Indoor Depth Estimation" (CVPR 2022)

Toward Practical Monocular Indoor Depth Estimation Cho-Ying Wu, Jialiang Wang, Michael Hall, Ulrich Neumann, Shuochen Su [arXiv] [project site] DistDe

Meta Research 122 Dec 13, 2022
Planar Prior Assisted PatchMatch Multi-View Stereo

ACMP [News] The code for ACMH is released!!! [News] The code for ACMM is released!!! About This repository contains the code for the paper Planar Prio

Qingshan Xu 127 Dec 31, 2022
eXPeditious Data Transfer

xpdt: eXPeditious Data Transfer About xpdt is (yet another) language for defining data-types and generating code for serializing and deserializing the

Gianni Tedesco 3 Jan 06, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Learning embeddings for classification, retrieval and ranking.

StarSpace StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems: Learning wor

Facebook Research 3.8k Dec 22, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
Code for our ALiBi method for transformer language models.

Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation This repository contains the code and models for our paper Tra

Ofir Press 211 Dec 31, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
Implementation of ConvMixer in TensorFlow and Keras

ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in that it operates directly on

Sayan Nath 8 Oct 03, 2022
This repo. is an implementation of ACFFNet, which is accepted for in Image and Vision Computing.

Attention-Guided-Contextual-Feature-Fusion-Network-for-Salient-Object-Detection This repo. is an implementation of ACFFNet, which is accepted for in I

5 Nov 21, 2022
[CIKM 2021] Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning

Enhancing Aspect-Based Sentiment Analysis with Supervised Contrastive Learning. This repo contains the PyTorch code and implementation for the paper E

Akuchi 18 Dec 22, 2022
DeepLab2: A TensorFlow Library for Deep Labeling

DeepLab2 is a TensorFlow library for deep labeling, aiming to provide a unified and state-of-the-art TensorFlow codebase for dense pixel labeling tasks.

Google Research 845 Jan 04, 2023
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022