Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes, ICCV 2017

Overview

AdaptationSeg

This is the Python reference implementation of AdaptionSeg proposed in "Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes".

Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes
Yang Zhang; Philip David; Boqing Gong;
International Conference on Computer Vision, 2017
A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes
Yang Zhang; Philip David;  Hassan Foroosh; Boqing Gong;
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019

[TPAMI paper] [ICCV paper] [ArXiv Extended paper] [Poster]

[New] Survey of domain adaptation for semantic segmentation

Check out our new survey of domain adaptation for semantic segmentation in our TPAMI paper.

Review

Overview

Qualitative Results

We introduced a set of constraints to domain-adapt an arbitrary segmentation convolutional neural network (CNN) trained on source domain (synthetic images) to target domain (real images) without accessing target domain annotations.

Overview

Prerequisites

  • Linux
  • A CUDA-enabled NVIDIA GPU; Recommend video memory >= 11GB

Getting Started

Installation

The code requires following dependencies:

  • Python 2/3
  • Theano (installation)
  • Keras>=2.0.5 (Lower version might encounter Conv2DTranspose problem with Theano backend) (installation; You might want to install though pip since conda only offers Keras<=2.0.2)
  • Pillow (installation)

Keras backend setup

Make sure your Keras's image_data_format is channels_first. It is recommended to use Theano as the backend. However Tensorflow should also be okay. Note that using Tensorflow will result in lower initial/baseline model performance because the baseline model was trained using Theano.

How do I check/switch them?

Download dataset

1, Download leftImg8bit_trainvaltest.zip and leftImg8bit_trainextra.zip in CityScape dataset here. (Require registration)

2, Download SYNTHIA-RAND-CITYSCAPES in SYNTHIA dataset here.

3, Download our auxiliary pre-inferred target domain properties (Including both superpixel landmark and label distribution described in the paper) & parsed annotation here.

4, Download the submodule cityscapesScripts for evaluation purpose.

5, Unzip and organize them in this way:

./
├── train_val_DA.py
├── ...
├── cityscapesScripts/
│   ├── ...
│   └── cityscapesscripts/
│       ├── ...
│       └── evaluation/...
└── data/
    ├── Image/
    │   ├── CityScape/           # Unzip from two CityScape zips
    │   │   ├── test/
    │   │   ├── train/
    │   │   ├── train_extra/
    │   │   └── val/
    │   └── SYNTHIA/             # Unzip from the SYNTHIA dataset
    │       └── train/
    ├── label_distribution/      # Unzip from our auxiliary dataset
    │   └── ...
    ├── segmentation_annotation/ # Unzip from our auxiliary dataset
    │   └── ...
    ├── SP_labels/               # Unzip from our auxiliary dataset
    │   └── ...
    └── SP_landmark/             # Unzip from our auxiliary dataset
        └── ...

(Hint: If you have already downloaded the datasets but do not want to move them around, you may want to create some symbolic links of exsiting local datasets)

Training

Run train_val_FCN_DA.py either in your favorite Python IDE or the terminal by typing:

python train_val_FCN_DA.py

This would train the model for six epochs and save the best model during the training. You can stop it and continue to the evaluation during training if you feel it takes too long, however, performance would not be guaranteed then.

Evaluation

After running train_val_FCN_DA.py for at least 500 steps, run test_FCN_DA.py either in your favorite Python IDE or the terminal by typing:

python test_FCN_DA.py

This would evaluate both pre-trained SYNTHIA-FCN and adapted FCN over CityScape dataset and print both mean IoU.

Note

The original framework was implemented in Keras 1 with a custom transposed convolution ops. The performance might be slightly different from the ones reported in the paper. Also, some new commits in TF/Theano optimizer implementation after the code release has broken the losses' numerical stability. I have changed code's optimizer to SGD despite the original paper used Adadelta. You are welcome to try Adadelta/Adam however it seems that they will result in a NaN loss right after training starts. If the NaN problem persists, try to remove the label distribution loss from the training.

Citation

Please cite our paper if this code benefits your reseaarch:

@InProceedings{Zhang_2017_ICCV,
author = {Zhang, Yang and David, Philip and Gong, Boqing},
title = {Curriculum Domain Adaptation for Semantic Segmentation of Urban Scenes},
booktitle={The IEEE International Conference on Computer Vision (ICCV)},
volume={2},
number={5},
pages={6},
month = {Oct},
year = {2017}
}

@ARTICLE{Zhang_2019_TPAMI,
author={Zhang, Yang and David, Philip and Foroosh, Hassan and Gong, Boqing},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
title={A Curriculum Domain Adaptation Approach to the Semantic Segmentation of Urban Scenes},
year={2019},
volume={},
number={},
pages={1-1},
doi={10.1109/TPAMI.2019.2903401},
ISSN={1939-3539},
month={},}
Owner
Yang Zhang
Perception @ Waymo
Yang Zhang
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Pytorch code for our paper Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains)

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
PyTorch code for training MM-DistillNet for multimodal knowledge distillation

There is More than Meets the Eye: Self-Supervised Multi-Object Detection and Tracking with Sound by Distilling Multimodal Knowledge MM-DistillNet is a

51 Dec 20, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner [Li et al., 2020].

VGPL-Visual-Prior PyTorch implementation for the visual prior component (i.e. perception module) of the Visually Grounded Physics Learner (VGPL). Give

Toru 8 Dec 29, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Simulating Sycamore quantum circuits classically using tensor network algorithm.

Simulating the Sycamore quantum supremacy circuit This repo contains data we have obtained in simulating the Sycamore quantum supremacy circuits with

Feng Pan 46 Nov 17, 2022
MEND: Model Editing Networks using Gradient Decomposition

MEND: Model Editing Networks using Gradient Decomposition Setup Environment This codebase uses Python 3.7.9. Other versions may work as well. Create a

Eric Mitchell 141 Dec 02, 2022
Recursive Bayesian Networks

Recursive Bayesian Networks This repository contains the code to reproduce the results from the NeurIPS 2021 paper Lieck R, Rohrmeier M (2021) Recursi

Robert Lieck 11 Oct 18, 2022
Shape-Adaptive Selection and Measurement for Oriented Object Detection

Source Code of AAAI22-2171 Introduction The source code includes training and inference procedures for the proposed method of the paper submitted to t

houliping 24 Nov 29, 2022
Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
(AAAI 2021) Progressive One-shot Human Parsing

End-to-end One-shot Human Parsing This is the official repository for our two papers: Progressive One-shot Human Parsing (AAAI 2021) End-to-end One-sh

54 Dec 30, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrai

Hugging Face 77.4k Jan 05, 2023
Converting CPT to bert form for use

cpt-encoder 将CPT转成bert形式使用 说明 刚刚刷到又出了一种模型:CPT,看论文显示,在很多中文任务上性能比mac bert还好,就迫不及待想把它用起来。 根据对源码的研究,发现该模型在做nlu建模时主要用的encoder部分,也就是bert,因此我将这部分权重转为bert权重类型

黄辉 1 Oct 14, 2021
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022