Tensors and neural networks in Haskell

Overview

Hasktorch

Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the core C++ libraries shared by PyTorch.

This project is in active development, so expect changes to the library API as it evolves. We would like to invite new users to join our Hasktorch slack space for questions and discussions. Contributions/PR are encouraged.

Currently we are developing the second major release of Hasktorch (0.2). Note the 1st release, Hasktorch 0.1, on hackage is outdated and should not be used.

Documentation

The documentation is divided into several sections:

Introductory Videos

Getting Started

The following steps will get you started. They assume the hasktorch repository has just been cloned. After setup is done, read the online tutorials and API documents.

linux+cabal+cpu

Starting from the top-level directory of the project, run:

$ pushd deps       # Change to the deps directory and save the current directory.
$ ./get-deps.sh    # Run the shell script to retrieve the libtorch dependencies.
$ popd             # Go back to the root directory of the project.
$ source setenv    # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

linux+cabal+cuda11

Starting from the top-level directory of the project, run:

$ pushd deps              # Change to the deps directory and save the current directory.
$ ./get-deps.sh -a cu111  # Run the shell script to retrieve the libtorch dependencies.
$ popd                    # Go back to the root directory of the project.
$ source setenv           # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh        # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE="cuda:0"        # Set device to CUDA for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

macos+cabal+cpu

Starting from the top-level directory of the project, run:

$ pushd deps       # Change to the deps directory and save the current directory.
$ ./get-deps.sh    # Run the shell script to retrieve the libtorch dependencies.
$ popd             # Go back to the root directory of the project.
$ source setenv    # Set the shell environment to reference the shared library locations.
$ ./setup-cabal.sh # Create a cabal project file

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

linux+stack+cpu

Install the Haskell Tool Stack if you haven't already, following instructions here

Starting from the top-level directory of the project, run:

$ pushd deps     # Change to the deps directory and save the current directory.
$ ./get-deps.sh  # Run the shell script to retrieve the libtorch dependencies.
$ popd           # Go back to the root directory of the project.
$ source setenv  # Set the shell environment to reference the shared library locations.

To build and test the Hasktorch library, run:

$ stack build hasktorch  # Build the Hasktorch library.
$ stack test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ stack build examples  # Build the Hasktorch examples.
$ stack test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ stack run static-mnist-cnn     # Run the MNIST CNN example.

macos+stack+cpu

Install the Haskell Tool Stack if you haven't already, following instructions here

Starting from the top-level directory of the project, run:

$ pushd deps     # Change to the deps directory and save the current directory.
$ ./get-deps.sh  # Run the shell script to retrieve the libtorch dependencies.
$ popd           # Go back to the root directory of the project.
$ source setenv  # Set the shell environment to reference the shared library locations.

To build and test the Hasktorch library, run:

$ stack build hasktorch  # Build the Hasktorch library.
$ stack test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ stack build examples  # Build the Hasktorch examples.
$ stack test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ stack run static-mnist-cnn     # Run the MNIST CNN example.

nixos+cabal+cpu

(Optional) Install and set up Cachix:

$ nix-env -iA cachix -f https://cachix.org/api/v1/install  # (Optional) Install Cachix.
$ cachix use iohk                                          # (Optional) Use IOHK's cache.
$ cachix use hasktorch                                     # (Optional) Use hasktorch's cache.

Starting from the top-level directory of the project, run:

$ nix-shell  # Enter the nix shell environment for Hasktorch.

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE=cpu             # Set device to CPU for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

nixos+cabal+cuda11

(Optional) Install and set up Cachix:

$ nix-env -iA cachix -f https://cachix.org/api/v1/install  # (Optional) Install Cachix.
$ cachix use iohk                                          # (Optional) Use IOHK's cache.
$ cachix use hasktorch                                     # (Optional) Use hasktorch's cache.

Starting from the top-level directory of the project, run:

$ nix-shell --arg cudaSupport true --argstr cudaMajorVersion 11  # Enter the nix shell environment for Hasktorch.

To build and test the Hasktorch library, run:

$ cabal build hasktorch  # Build the Hasktorch library.
$ cabal test hasktorch   # Build and run the Hasktorch library test suite.

To build and test the example executables shipped with hasktorch, run:

$ cabal build examples  # Build the Hasktorch examples.
$ cabal test examples   # Build and run the Hasktorch example test suites.

To run the MNIST CNN example, run:

$ cd examples                   # Change to the examples directory.
$ ./datasets/download-mnist.sh  # Download the MNIST dataset.
$ mv mnist data                 # Move the MNIST dataset to the data directory.
$ export DEVICE="cuda:0"        # Set device to CUDA for the MNIST CNN example.
$ cabal run static-mnist-cnn    # Run the MNIST CNN example.

docker+jupyterlab+cuda11

This dockerhub repository provides the docker-image of jupyterlab. It supports cuda11, cuda10 and cpu only. When you use jupyterlab with hasktorch, type following command, then click a url in a console.

$ docker run --gpus all -it --rm -p 8888:8888 htorch/hasktorch-jupyter
or
$ docker run --gpus all -it --rm -p 8888:8888 htorch/hasktorch-jupyter:latest-cu11

Known Issues

Tensors Cannot Be Moved to CUDA

In rare cases, you may see errors like

cannot move tensor to "CUDA:0"

although you have CUDA capable hardware in your machine and have followed the getting-started instructions for CUDA support.

If that happens, check if /run/opengl-driver/lib exists. If not, make sure your CUDA drivers are installed correctly.

Weird Behaviour When Switching from CPU-Only to CUDA-Enabled Nix Shell

If you have run cabal in a CPU-only Hasktorch Nix shell before, you may need to:

  • Clean the dist-newstyle folder using cabal clean.
  • Delete the .ghc.environment* file in the Hasktorch root folder.

Otherwise, at best, you will not be able to move tensors to CUDA, and, at worst, you will see weird linker errors like

gcc: error: hasktorch/dist-newstyle/build/x86_64-linux/ghc-8.8.3/libtorch-ffi-1.5.0.0/build/Torch/Internal/Unmanaged/Autograd.dyn_o: No such file or directory
`cc' failed in phase `Linker'. (Exit code: 1)

Contributing

We welcome new contributors.

Contact us for access to the hasktorch slack channel. You can send an email to [email protected] or on twitter as @austinvhuang, @SamStites, @tscholak, or @junjihashimoto3.

Notes for library developers

See the wiki for developer notes.

Project Folder Structure

Basic functionality:

  • deps/ - submodules and downloads for build dependencies (libtorch, mklml, pytorch) -- you can ignore this if you are on Nix
  • examples/ - high level example models (xor mlp, typed cnn, etc.)
  • experimental/ - experimental projects or tips
  • hasktorch/ - higher level user-facing library, calls into ffi/, used by examples/

Internals (for contributing developers):

  • codegen/ - code generation, parses Declarations.yaml spec from pytorch and produces ffi/ contents
  • inline-c/ - submodule to inline-cpp fork used for C++ FFI
  • libtorch-ffi/- low level FFI bindings to libtorch
  • spec/ - specification files used for codegen/
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
A Haskell kernel for IPython.

IHaskell You can now try IHaskell directly in your browser at CoCalc or mybinder.org. Alternatively, watch a talk and demo showing off IHaskell featur

Andrew Gibiansky 2.4k Dec 29, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Sagor Saha 4 Sep 04, 2021
Anchor-free Oriented Proposal Generator for Object Detection

Anchor-free Oriented Proposal Generator for Object Detection Gong Cheng, Jiabao Wang, Ke Li, Xingxing Xie, Chunbo Lang, Yanqing Yao, Junwei Han, Intro

jbwang1997 56 Nov 15, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
code for TCL: Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022

Vision-Language Pre-Training with Triple Contrastive Learning, CVPR 2022 News (03/16/2022) upload retrieval checkpoints finetuned on COCO and Flickr T

187 Jan 02, 2023
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Implementation of a Transformer that Ponders, using the scheme from the PonderNet paper

Ponder(ing) Transformer Implementation of a Transformer that learns to adapt the number of computational steps it takes depending on the difficulty of

Phil Wang 65 Oct 04, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
A library to inspect itermediate layers of PyTorch models.

A library to inspect itermediate layers of PyTorch models. Why? It's often the case that we want to inspect intermediate layers of a model without mod

archinet.ai 380 Dec 28, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Static Features Classifier - A static features classifier for Point-Could clusters using an Attention-RNN model

Static Features Classifier This is a static features classifier for Point-Could

ABDALKARIM MOHTASIB 1 Jan 25, 2022
ICLR 2021 i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning

Introduction PyTorch code for the ICLR 2021 paper [i-Mix: A Domain-Agnostic Strategy for Contrastive Representation Learning]. @inproceedings{lee2021i

Kibok Lee 68 Nov 27, 2022
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022