A PyTorch Implementation of the paper - Choi, Woosung, et al. "Investigating u-nets with various intermediate blocks for spectrogram-based singing voice separation." 21th International Society for Music Information Retrieval Conference, ISMIR. 2020.

Overview

Investigating U-NETS With Various Intermediate Blocks For Spectrogram-based Singing Voice Separation

A Pytorch Implementation of the paper "Investigating U-NETS With Various Intermediate Blocks For Spectrogram-based Singing Voice Separation (ISMIR 2020)"

Installation

conda install pytorch=1.6 cudatoolkit=10.2 -c pytorch
conda install -c conda-forge ffmpeg librosa
conda install -c anaconda jupyter
pip install musdb museval pytorch_lightning effortless_config wandb pydub nltk spacy 

Dataset

  1. Download Musdb18
  2. Unzip files
  3. We recommend you to use the wav file mode for the fast data preparation.
    musdbconvert path/to/musdb-stems-root path/to/new/musdb-wav-root

Demonstration: A Pretrained Model (TFC_TDF_Net (large))

Colab Link

Tutorial

1. activate your conda

conda activate yourcondaname

2. Training a default UNet with TFC_TDFs

python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --target_name vocals --mode train --gpus 4 --distributed_backend ddp --sync_batchnorm True --pin_memory True --num_workers 32 --precision 16 --run_id debug --optimizer adam --lr 0.001 --save_top_k 3 --patience 100 --min_epochs 1000 --max_epochs 2000 --n_fft 2048 --hop_length 1024 --num_frame 128  --train_loss spec_mse --val_loss raw_l1 --model tfc_tdf_net  --spec_est_mode mapping --spec_type complex --n_blocks 7 --internal_channels 24  --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --min_bn_units 16 --tfc_tdf_activation relu  --first_conv_activation relu --last_activation identity --seed 2020

3. Evaluation

After training is done, checkpoints are saved in the following directory.

etc/modelname/run_id/*.ckpt

For evaluation,

python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --target_name vocals --mode eval --gpus 1 --pin_memory True --num_workers 64 --precision 32 --run_id debug --batch_size 4 --n_fft 2048 --hop_length 1024 --num_frame 128 --train_loss spec_mse --val_loss raw_l1 --model tfc_tdf_net --spec_est_mode mapping --spec_type complex --n_blocks 7 --internal_channels 24 --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --min_bn_units 16 --tfc_tdf_activation relu --first_conv_activation relu --last_activation identity --log wandb --ckpt vocals_epoch=891.ckpt

Below is the result.

wandb:          test_result/agg/vocals_SDR 6.954695
wandb:   test_result/agg/accompaniment_SAR 14.3738075
wandb:          test_result/agg/vocals_SIR 15.5527
wandb:   test_result/agg/accompaniment_SDR 13.561705
wandb:   test_result/agg/accompaniment_ISR 22.69328
wandb:   test_result/agg/accompaniment_SIR 18.68421
wandb:          test_result/agg/vocals_SAR 6.77698
wandb:          test_result/agg/vocals_ISR 12.45371

4. Interactive Report (wandb)

wandb report

Indermediate Blocks

Please see this document.

How to use

1. Training

1.1. Intermediate Block independent Parameters

1.1.A. General Parameters
  • --musdb_root musdb path
  • --musdb_is_wav whether the path contains wav files or not
  • --filed_mode whether you want to use filed mode or not. recommend to use it for the fast data preparation.
  • --target_name one of vocals, drum, bass, other
1.1.B. Training Environment
  • --mode train or eval
  • --gpus number of gpus
    • (WARN) gpus > 1 might be problematic when evaluating models.
  • distributed_backend use this option only when you are using multi-gpus. distributed backend, one of ddp, dp, ... we recommend you to use ddp.
  • --sync_batchnorm True only when you are using ddp
  • --pin_memory
  • --num_workers
  • --precision 16 or 32
  • --dev_mode whether you want a developement mode or not. dev mode is much faster because it uses only a small subset of the dataset.
  • --run_id (optional) directory path where you want to store logs and etc. if none then the timestamp.
  • --log True for default pytorch lightning log. wandb is also available.
  • --seed random seed for a deterministic result.
1.1.C. Training hyperparmeters
  • --batch_size trivial :)
  • --optimizer adam, rmsprop, etc
  • --lr learning rate
  • --save_top_k how many top-k epochs you want to save the training state (criterion: validation loss)
  • --patience early stop control parameter. see pytorch lightning docs.
  • --min_epochs trivial :)
  • --max_epochs trivial :)
  • --model
    • tfc_tdf_net
    • tfc_net
    • tdc_net
1.1.D. Fourier parameters
  • --n_fft
  • --hop_length
  • num_frame number of frames (time slices)
1.1.F. criterion
  • --train_loss: spec_mse, raw_l1, etc...
  • --val_loss: spec_mse, raw_l1, etc...

1.2. U-net Parameters

  • --n_blocks: number of intermediate blocks. must be an odd integer. (default=7)
  • --input_channels:
    • if you use two-channeled complex-valued spectrogram, then 4
    • if you use two-channeled manginutde spectrogram, then 2
  • --internal_channels: number of internal chennels (default=24)
  • --first_conv_activation: (default='relu')
  • --last_activation: (default='sigmoid')
  • --t_down_layers: list of layer where you want to doubles/halves the time resolution. if None, ds/us applied to every single layer. (default=None)
  • --f_down_layers: list of layer where you want to doubles/halves the frequency resolution. if None, ds/us applied to every single layer. (default=None)

1.3. SVS Framework

  • --spec_type: type of a spectrogram. ['complex', 'magnitude']

  • --spec_est_mode: spectrogram estimation method. ['mapping', 'masking']

  • CaC Framework

    • you can use cac framework [1] by setting
      • --spec_type complex --spec_est_mode mapping --last_activation identity
  • Mag-only Framework

    • if you want to use the traditional magnitude-only estimation with sigmoid, then try
      • --spec_type magnitude --spec_est_mode masking --last_activation sigmoid
    • you can also change the last activation as follows
      • --spec_type magnitude --spec_est_mode masking --last_activation relu
  • Alternatives

    • you can build an svs framework with any combination of these parameters
    • e.g. --spec_type complex --spec_est_mode masking --last_activation tanh

1.4. Block-dependent Parameters

1.4.A. TDF Net
  • --bn_factor: bottleneck factor $bn$ (default=16)
  • --min_bn_units: when target frequency domain size is too small, we just use this value instead of $\frac{f}{bn}$. (default=16)
  • --bias: (default=False)
  • --tdf_activation: activation function of each block (default=relu)

1.4.B. TDC Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tdc_activation: activation function of each block (default=relu)

1.4.C. TFC Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_t: size of kernel of time-dimension (default=3)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tfc_activation: activation function of each block (default=relu)

1.4.D. TFC_TDF Net
  • --n_internal_layers: number of 1-d CNNs in a block (default=5)
  • --kernel_size_t: size of kernel of time-dimension (default=3)
  • --kernel_size_f: size of kernel of frequency-dimension (default=3)
  • --tfc_tdf_activation: activation function of each block (default=relu)
  • --bn_factor: bottleneck factor $bn$ (default=16)
  • --min_bn_units: when target frequency domain size is too small, we just use this value instead of $\frac{f}{bn}$. (default=16)
  • --tfc_tdf_bias: (default=False)

1.4.E. TDC_RNN Net
  • '--n_internal_layers' : number of 1-d CNNs in a block (default=5)

  • '--kernel_size_f' : size of kernel of frequency-dimension (default=3)

  • '--bn_factor_rnn' : (default=16)

  • '--num_layers_rnn' : (default=1)

  • '--bias_rnn' : bool, (default=False)

  • '--min_bn_units_rnn' : (default=16)

  • '--bn_factor_tdf' : (default=16)

  • '--bias_tdf' : bool, (default=False)

  • '--tdc_rnn_activation' : (default='relu')

current bug - cuda error occurs when tdc_rnn net with precision 16

Reproducible Experimental Results

  • TFC_TDF_large
    • parameters
    --musdb_root ../repos/musdb18_wav
    --musdb_is_wav True
    --filed_mode True
    
    --gpus 4
    --distributed_backend ddp
    --sync_batchnorm True
    
    --num_workers 72
    --train_loss spec_mse
    --val_loss raw_l1
    --batch_size 12
    --precision 16
    --pin_memory True
    --num_worker 72         
    --save_top_k 3
    --patience 200
    --run_id debug_large
    --log wandb
    --min_epochs 2000
    --max_epochs 3000
    
    --optimizer adam
    --lr 0.001
    
    --model tfc_tdf_net
    --n_fft 4096
    --hop_length 1024
    --num_frame 128
    --spec_type complex
    --spec_est_mode mapping
    --last_activation identity
    --n_blocks 9
    --internal_channels 24
    --n_internal_layers 5
    --kernel_size_t 3 
    --kernel_size_f 3 
    --tfc_tdf_bias True
    --seed 2020
    
    
    • training
    python main.py --musdb_root ../repos/musdb18_wav --musdb_is_wav True --filed_mode True --gpus 4 --distributed_backend ddp --sync_batchnorm True --num_workers 72 --train_loss spec_mse --val_loss raw_l1 --batch_size 24 --precision 16 --pin_memory True --num_worker 72 --save_top_k 3 --patience 200 --run_id debug_large --log wandb --min_epochs 2000 --max_epochs 3000 --optimizer adam --lr 0.001 --model tfc_tdf_net --n_fft 4096 --hop_length 1024 --num_frame 128 --spec_type complex --spec_est_mode mapping --last_activation identity --n_blocks 9 --internal_channels 24 --n_internal_layers 5 --kernel_size_t 3 --kernel_size_f 3 --tfc_tdf_bias True --seed 2020
    • evaluation result (epoch 2007)
      • SDR 8.029
      • ISR 13.708
      • SIR 16.409
      • SAR 7.533

Interactive Report (wandb)

wandb report

You can cite this paper as follows:

@inproceedings{choi_2020, Author = {Choi, Woosung and Kim, Minseok and Chung, Jaehwa and Lee, Daewon and Jung, Soonyoung}, Booktitle = {21th International Society for Music Information Retrieval Conference}, Editor = {ISMIR}, Month = {OCTOBER}, Title = {Investigating U-Nets with various intermediate blocks for spectrogram-based singing voice separation.}, Year = {2020}}

Reference

[1] Woosung Choi, Minseok Kim, Jaehwa Chung, DaewonLee, and Soonyoung Jung, “Investigating u-nets with various intermediate blocks for spectrogram-based singingvoice separation.,” in 21th International Society for Music Information Retrieval Conference, ISMIR, Ed., OCTOBER 2020.

Owner
Woosung Choi
WooSung Choi Ph.d candidate @IELab-AT-KOREA-UNIV Seoul, Korea
Woosung Choi
Exploiting Robust Unsupervised Video Person Re-identification

Exploiting Robust Unsupervised Video Person Re-identification Implementation of the proposed uPMnet. For the preprint, please refer to [Arxiv]. Gettin

1 Apr 09, 2022
Customizable RecSys Simulator for OpenAI Gym

gym-recsys: Customizable RecSys Simulator for OpenAI Gym Installation | How to use | Examples | Citation This package describes an OpenAI Gym interfac

Xingdong Zuo 14 Dec 08, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

This is the official code repository for A Simple Long-Tailed Rocognition Baseline via Vision-Language Model.

peng gao 42 Nov 26, 2022
Image restoration with neural networks but without learning.

Warning! The optimization may not converge on some GPUs. We've personally experienced issues on Tesla V100 and P40 GPUs. When running the code, make s

Dmitry Ulyanov 7.4k Jan 01, 2023
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Rest API Written In Python To Classify NSFW Images.

Rest API Written In Python To Classify NSFW Images.

Wahyusaputra 2 Dec 23, 2021
Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance

Nested Graph Neural Networks About Nested Graph Neural Network (NGNN) is a general framework to improve a base GNN's expressive power and performance.

Muhan Zhang 38 Jan 05, 2023
The official implementation of the research paper "DAG Amendment for Inverse Control of Parametric Shapes"

DAG Amendment for Inverse Control of Parametric Shapes This repository is the official Blender implementation of the paper "DAG Amendment for Inverse

Elie Michel 157 Dec 26, 2022
ESL: Event-based Structured Light

ESL: Event-based Structured Light Video (click on the image) This is the code for the 2021 3DV paper ESL: Event-based Structured Light by Manasi Mugli

Robotics and Perception Group 29 Oct 24, 2022
The authors' implementation of Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations

Unsupervised Adversarial Learning of 3D Human Pose from 2D Joint Locations This is the authors' implementation of Unsupervised Adversarial Learning of

Dwango Media Village 140 Dec 07, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
custom pytorch implementation of MoCo v3

MoCov3-pytorch custom implementation of MoCov3 [arxiv]. I made minor modifications based on the official MoCo repository [github]. No ViT part code an

39 Nov 14, 2022
PolyGlot, a fuzzing framework for language processors

PolyGlot, a fuzzing framework for language processors Build We tested PolyGlot on Ubuntu 18.04. Get the source code: git clone https://github.com/s3te

Software Systems Security Team at Penn State University 79 Dec 27, 2022
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
We present a regularized self-labeling approach to improve the generalization and robustness properties of fine-tuning.

Overview This repository provides the implementation for the paper "Improved Regularization and Robustness for Fine-tuning in Neural Networks", which

NEU-StatsML-Research 21 Sep 08, 2022