Visual dialog agents with pre-trained vision-and-language encoders.

Overview

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation

Or READ-UP: Referring Expression Agent Dialog with Unified Pretraining.

This repo includes the training/testing code for our paper Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation that has been accepted by CVPR 2021.

Please cite the following paper if you use the code in this repository:

@inproceedings{tu2021learning,
  title={Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation},
  author={Tu, Tao and Ping, Qing and Thattai, Govindarajan and Tur, Gokhan and Natarajan, Prem},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={5622--5631},
  year={2021}
}

Repository Setup

Environment

The following environment is recommended:

Instance storage: > 800 GB
pytorch 1.4.0
cuda 10.0

Set up virtual environment and install pytorch:

$ conda create -n read_up python=3.6
$ conda activate read_up
$ git clone https://github.com/amazon-research/read-up.git

# [IMPORTANT] pytorch 1.4.0 have no issue for parallel training
$ conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.0 -c pytorch

Install dependencies:

# Install general dependencies
$ sudo apt-get install build-essential libcap-dev
$ pip install -r requirement.txt

# Install vqa-maskrcnn-benchmark (for feature extraction only)
$ git clone https://gitlab.com/vedanuj/vqa-maskrcnn-benchmark.git
$ cd vqa-maskrcnn-benchmark
$ python setup.py build develop

Install Apex for distributed training

# Apex is used for both `faster-rcnn feature extraction` & `distributed training`
$ git clone https://github.com/NVIDIA/apex
$ cd apex
$ pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./

Dataset

Meta-data

Download the GuessWhat?! dataset:

$ wget https://florian-strub.com/guesswhat.train.jsonl.gz -P data/
$ wget https://florian-strub.com//guesswhat.valid.jsonl.gz -P data/
$ wget https://florian-strub.com//guesswhat.test.jsonl.gz -P data/

Prepare dict.json:

  1. Set up repo as instructed in https://github.com/GuessWhatGame/guesswhat
  2. Generate the dict.json file:
$ python src/guesswhat/preprocess_data/create_dictionary.py -data_dir data -dict_file dict.json -min_occ 3
  1. Copy dict.json file to read-up repo:
$ cd read-up
$ mkdir tf-pretrained-model
$ cp guesswhat/data/dict.json read-up/tf-pretrained-model/

Dataset for Oracle models

1. Dataset for baseline Oracle + Faster-RCNN visual features.

Under vqa-maskrcnn-benchmark/data/, download RCNN model and COCO images:

# download RCNN model
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/detectron_model.pth
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/detectron_config.yaml

# download COCO data  
$ wget http://images.cocodataset.org/zips/train2014.zip
$ wget http://images.cocodataset.org/zips/val2014.zip
$ wget http://images.cocodataset.org/zips/test2014.zip
$ unzip -j train2014.zip 
$ unzip -j valid2014.zip 
$ unzip -j test2014.zip 

Copy the guesswhat.train/valid/test.jsonl to vqa-maskrcnn-benchmark/data/. Unzip the COCO images into a folder image_dir/COCO_2014/images/, and prepare a npy file for feature extraction later.


$ python bin/prepare_extract_gt_features_gw.py \
    --src vqa-maskrcnn-benchmark/data/guesswhat.train.jsonl \
    --img-dir vqa-maskrcnn-benchmark/image_dir/COCO_2014/images/ \
    --out vqa-maskrcnn-benchmark/image_dir/COCO_2014/npy_files/guesswhat.train.npy

Repeat the same process for val and test. The generated file looks like the following:

{
    {
        'file_name': 'name_of_image_file',
        'file_path': '<path_to_image_file_on_your_disk>',
        'bbox': array([
                        [ x1, y1, width1, height1],
                        [ x2, y2, width2, height2],
                        ...
                    ]),
        'num_box': 2
    },
    ....
}

Extract features from the ground-truth bounding boxes generated before:

$ python bin/extract_features_from_gt.py \
    --model_file vqa-maskrcnn-benchmark/data/detectron_model.pth \
    --config_file vqa-maskrcnn-benchmark/data/detectron_config.yaml \
    --imdb_gt_file vqa-maskrcnn-benchmark/image_dir/COCO_2014/npy_files/guesswhat.train.npy \
    --output_folder data/rcnn/from_gt_gw_xyxy_scale/train

Repeat this process for val and test data.

2. Dataset for our Oracle model.

Download the pretrained VilBERT model (both vanilla and 12-in-1 have similar performance in our experiments).

# download vanilla pretrained model
$ cd vilbert-pretrained-model
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/pretrained_model.bin

# download 12-in-1 pretrained model
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/multi_task_model.bin

Download the features for COCO:

$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/datasets/coco/features_100/COCO_trainval_resnext152_faster_rcnn_genome.lmdb/data.mdb && mv data.mdb COCO_trainval_resnext152_faster_rcnn_genome.lmdb/
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/datasets/coco/features_100/COCO_test_resnext152_faster_rcnn_genome.lmdb/data.mdb && mv data.mdb COCO_test_resnext152_faster_rcnn_genome.lmdb/

Dataset for Q-Gen models

1. Dataset for baseline Q-Gen model [1]

$ wget www.florian-strub.com/github/ft_vgg_img.zip
$ unzip ft_vgg_img.zip -d img/

2. Dataset for VDST Q-Gen model [2]

$ python bin/extract_features.py \
    --model_file vqa-maskrcnn-benchmark/data/detectron_model.pth \
    --config_file vqa-maskrcnn-benchmark/data/detectron_config.yaml \
    --image_dir vqa-maskrcnn-benchmark/image_dir/COCO_2014/images/ \
    --output_folder data/rcnn/from_rcnn/ \
    --batch_size 8

Dataset for Guesser models

1. Dataset for baseline Guesser model[1]

$ cd data/vilbert-multi-task
$ wget https://dl.fbaipublicfiles.com/vilbert-multi-task/datasets.tar.gz
$ tar -I pigz -xvf datasets.tar.gz datasets/guesswhat/

Model Training & Evaluation

Oracle

To train our Oracle model:

$ python -m torch.distributed.launch \
    --nproc_per_node=4 \
    --nnodes=1 \
    --node_rank=0 \
    main.py \
    --command train-oracle-vilbert \
    --config config_files/oracle_vilbert.yaml \
    --n-jobs 8

To evaluate our Oracle model:

$ python main.py \
    --command test-oracle-vilbert \
    --config config_files/oracle_vilbert.yaml \
    --load ckpt/oracle_vilbert-sd0/epoch-3.pth

This repo also implements other Oracle models:

  • Baseline Oracle model [1]
  • Baseline Oracle model + Faster-RCNN visual features (our ablation model)

To train and evaluate this model, run the main.py with corresponding config file and command.

Guesser

To train our Guesser model:

$ python main.py \
    --command train-guesser-vilbert \
    --config config_files/guesser_vilbert.yaml \
    --n-jobs 8

To evaluate our Guesser model:

$ python main.py \
    --command test-guesser-vilbert \
    --config config_files/guesser_vilbert.yaml \
    --n-jobs 8 \
    --load ckpt/guesser_vilbert-sd0/best.pth

This repo also implements other Guesser models:

  • Baseline Guesser model [1]

To train and evaluate this model, run the main.py with corresponding config file and command.

Q-Gen

To train our Q-Gen model:

# Distributed training
$ python -m torch.distributed.launch \
    --nproc_per_node=4 \
    --nnodes=1 \
    --node_rank=0 \
    main.py \
    --command train-qgen-vilbert \
    --config config_files/qgen_vilbert.yaml \
    --n-jobs 8 

# Non-distributed training
$ python main.py \
    --command train-qgen-vilbert \
    --config config_files/qgen_vilbert.yaml \
    --n-jobs 8 

To evalaute our Q-Gen model:

$ python main.py \
    --command test-self-play-all-vilbert \
    --config config_files/self_play_all_vilbert.yaml \
    --n-jobs 8

This repo also implements other Q-Gen models:

  • Baseline Q-Gen model [1]
  • VDST Q-Gen model [2]

To train and evaluate these models, run the main.py with corresponding config file and command.

References

[1] Strub, F., De Vries, H., Mary, J., Piot, B., Courvile, A., & Pietquin, O. (2017, August). End-to-end optimization of goal-driven and visually grounded dialogue systems. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 2765-2771).

[2] Pang, W., & Wang, X. (2020, April). Visual dialogue state tracking for question generation. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 34, No. 07, pp. 11831-11838).

Source code of SIGIR2021 Paper 'One Chatbot Per Person: Creating Personalized Chatbots based on Implicit Profiles'

DHAP Source code of SIGIR2021 Long Paper: One Chatbot Per Person: Creating Personalized Chatbots based on Implicit User Profiles . Preinstallation Fir

ZYMa 32 Dec 06, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Multi-Glimpse Network: A Robust and Efficient Classification Architecture based on Recurrent Downsampled Attention arXiv Require

9 May 10, 2022
Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training".

Mixup-Data-Dependency Code associated with the paper "Towards Understanding the Data Dependency of Mixup-style Training". Running Alternating Line Exp

Muthu Chidambaram 0 Nov 11, 2021
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
style mixing for animation face

An implementation of StyleGAN on Animation dataset. Install git clone https://github.com/MorvanZhou/anime-StyleGAN cd anime-StyleGAN pip install -r re

Morvan 46 Nov 30, 2022
Selfplay In MultiPlayer Environments

This project allows you to train AI agents on custom-built multiplayer environments, through self-play reinforcement learning.

200 Jan 08, 2023
Transformers are Graph Neural Networks!

🚀 Gated Graph Transformers Gated Graph Transformers for graph-level property prediction, i.e. graph classification and regression. Associated article

Chaitanya Joshi 46 Jun 30, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Implementation of Nyström Self-attention, from the paper Nyströmformer

Nyström Attention Implementation of Nyström Self-attention, from the paper Nyströmformer. Yannic Kilcher video Install $ pip install nystrom-attention

Phil Wang 95 Jan 02, 2023
Semantic Segmentation Suite in TensorFlow

Semantic Segmentation Suite in TensorFlow. Implement, train, and test new Semantic Segmentation models easily!

George Seif 2.5k Jan 06, 2023
Code for generating a single image pretraining dataset

Single Image Pretraining of Visual Representations As shown in the paper A critical analysis of self-supervision, or what we can learn from a single i

Yuki M. Asano 12 Dec 19, 2022
An official source code for "Augmentation-Free Self-Supervised Learning on Graphs"

Augmentation-Free Self-Supervised Learning on Graphs An official source code for Augmentation-Free Self-Supervised Learning on Graphs paper, accepted

Namkyeong Lee 59 Dec 01, 2022
Image segmentation with private İstanbul Dataset

Image Segmentation This repo was created for academic research and test result. Repo will update after academic article online. This repo contains wei

İrem KÖMÜRCÜ 9 Dec 11, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
[3DV 2021] A Dataset-Dispersion Perspective on Reconstruction Versus Recognition in Single-View 3D Reconstruction Networks

dispersion-score Official implementation of 3DV 2021 Paper A Dataset-dispersion Perspective on Reconstruction versus Recognition in Single-view 3D Rec

Yefan 7 May 28, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
[ICLR 2021, Spotlight] Large Scale Image Completion via Co-Modulated Generative Adversarial Networks

Large Scale Image Completion via Co-Modulated Generative Adversarial Networks, ICLR 2021 (Spotlight) Demo | Paper [NEW!] Time to play with our interac

Shengyu Zhao 373 Jan 02, 2023
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022