Deep Hedging Demo - An Example of Using Machine Learning for Derivative Pricing.

Overview

Deep Hedging Demo

Pricing Derivatives using Machine Learning

Image of Demo

1) Jupyter version: Run ./colab/deep_hedging_colab.ipynb on Colab.

2) Gui version: Run python ./pyqt5/main.py Check ./requirements.txt for main dependencies.

The Black-Scholes (BS) model – developed in 1973 and based on Nobel Prize winning works – has been the de-facto standard for pricing options and other financial derivatives for nearly half a century. The model can be used, under the assumption of a perfect financial market, to calculate an options price and the associated risk sensitivities. These risk sensitivities can then be theoretically used by a trader to create a perfect hedging strategy that eliminates all risks in a portfolio of options. However, the necessary conditions for a perfect financial market, such as zero transaction cost and the possibility of continuous trading, are difficult to meet in the real world. Therefore, in practice, banks have to rely on their traders’ intuition and experience to augment the BS model hedges with manual adjustments to account for these market imperfections. The derivative desks of every bank all hedge their positions, and their PnL and risk exposure depend crucially on the quality of their hedges. If their hedges does not properly account for market imperfections, banks might underestimate the true risk exposure of their portfolios. On the other hand, if their hedges overestimate the cost of market imperfections, banks might overprice their positions (relative to their competitors) and hence risk losing trades and/or customers. Over the last few decades, the financial market has become increasingly sophisticated. Intuition and experience of traders might not be sufficiently fast and accurate to compute the impact of market imperfections on their portfolios and to come up with good manual adjustments to their BS model hedges.

These limitations of the BS model are well-known, but neither academics nor practitioners have managed to develop alternatives to properly and systematically account for market frictions – at least not successful enough to be widely adopted by banks. Could machine learning (ML) be the cure? Last year, the Risk magazine reported that JP Morgan has begun to use machine learning to hedge (a.k.a. Deep Hedging) a portion of its vanilla index options flow book and plan to roll out the similar technology for single stocks, baskets and light exotics. According to Risk.net (2019), the technology can create hedging strategies that “automatically factor in market fictions, such as transaction costs, liquidity constraints and risk limits”. More amazingly, the ML algorithm “far outperformed” hedging strategies derived from the BS model, and it could reduce the cost of hedging (in certain asset class) by “as much as 80%”. The technology has been heralded by some as “a breakthrough in quantitative finance, one that could mark the end of the Black-Scholes era.” Hence, it is not surprising that firms, such as Bank of America, Societe Generale and IBM, are reportedly developing their own ML-based system for derivative hedging.

Machine learning algorithms are often referred to as “black boxes” because of the inherent opaqueness and difficulties to inspect how an algorithm is able to accomplishing what is accomplishing. Buhler et al (2019) recently published a paper outlining the mechanism of this ground-breaking technology. We follow their outlined methodology to implement and replicate the “deep hedging” algorithm under different simulated market conditions. Given a distribution of the underlying assets and trader preference, the “deep hedging” algorithm attempts to identify the optimal hedge strategy (as a function of over 10k model parameters) that minimizes the residual risk of a hedged portfolio. We implement the “deep hedging” algorithm to demonstrate its potential benefit in a simplified yet sufficiently realistic setting. We first benchmark the deep hedging strategy against the classic Black-Scholes hedging strategy in a perfect world with no transaction cost, in which case the performance of both strategies should be similar. Then, we benchmark again in a world with market friction (i.e. non-zero transaction costs), in which case the deep hedging strategy should outperform the classic Black-Scholes hedging strategy.

References:

Risk.net, (2019). “Deep hedging and the end of the Black-Scholes era.”

Hans Buhler et al, (2019). “Deep Hedging.” Quantitative Finance, 19(8).

Owner
Yu Man Tam
Yu Man Tam
Dynamic hair modeling from monocular videos using deep neural networks

Dynamic Hair Modeling The source code of the networks for our paper "Dynamic hair modeling from monocular videos using deep neural networks" (SIGGRAPH

53 Oct 18, 2022
PyTorch implementation of the TTC algorithm

Trust-the-Critics This repository is a PyTorch implementation of the TTC algorithm and the WGAN misalignment experiments presented in Trust the Critic

0 Nov 29, 2021
Suite of 500 procedurally-generated NLP tasks to study language model adaptability

TaskBench500 The TaskBench500 dataset and code for generating tasks. Data The TaskBench dataset is available under wget http://web.mit.edu/bzl/www/Tas

Belinda Li 20 May 17, 2022
Localized representation learning from Vision and Text (LoVT)

Localized Vision-Text Pre-Training Contrastive learning has proven effective for pre- training image models on unlabeled data and achieved great resul

Philip Müller 10 Dec 07, 2022
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Neural machine translation between the writings of Shakespeare and modern English using TensorFlow

Shakespeare translations using TensorFlow This is an example of using the new Google's TensorFlow library on monolingual translation going from modern

Motoki Wu 245 Dec 28, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Public implementation of the Convolutional Motif Kernel Network (CMKN) architecture

CMKN Implementation of the convolutional motif kernel network (CMKN) introduced in Ditz et al., "Convolutional Motif Kernel Network", 2021. Testing Yo

1 Nov 17, 2021
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Code To Tune or Not To Tune? Zero-shot Models for Legal Case Entailment.

COLIEE 2021 - task 2: Legal Case Entailment This repository contains the code to reproduce NeuralMind's submissions to COLIEE 2021 presented in the pa

NeuralMind 13 Dec 16, 2022
A FAIR dataset of TCV experimental results for validating edge/divertor turbulence models.

TCV-X21 validation for divertor turbulence simulations Quick links Intro Welcome to TCV-X21. We're glad you've found us! This repository is designed t

0 Dec 18, 2021
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
TensorFlow-LiveLessons - "Deep Learning with TensorFlow" LiveLessons

TensorFlow-LiveLessons Note that the second edition of this video series is now available here. The second edition contains all of the content from th

Deep Learning Study Group 830 Jan 03, 2023
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21).

ACTION-Net Official implementation of ACTION-Net: Multipath Excitation for Action Recognition (CVPR'21). Getting Started EgoGesture data folder struct

V-Sense 171 Dec 26, 2022
Simple Pixelbot for Diablo 2 Resurrected written in python and opencv.

Simple Pixelbot for Diablo 2 Resurrected written in python and opencv. Obviously only use it in offline mode as it is against the TOS of Blizzard to use it in online mode!

468 Jan 03, 2023