Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Related tags

Deep LearningVG-Bert
Overview

Visually Grounded Bert Language Model

This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision with Cross-Modal Contrastive Learning.

To cite this work: Zhang, Y., Choi, M., Han, K., & Liu, Z. Explainable Semantic Space by Grounding Language toVision with Cross-Modal Contrastive Learning. (accepted by Neurips 2021).

Abstract

In natural language processing, most models try to learn semantic representa- tions merely from texts. The learned representations encode the “distributional semantics” but fail to connect to any knowledge about the physical world. In contrast, humans learn language by grounding concepts in perception and action and the brain encodes “grounded semantics” for cognition. Inspired by this notion and recent work in vision-language learning, we design a two-stream model for grounding language learning in vision. The model includes a VGG-based visual stream and a Bert-based language stream. The two streams merge into a joint representational space. Through cross-modal contrastive learning, the model first learns to align visual and language representations with the MS COCO dataset. The model further learns to retrieve visual objects with language queries through a cross-modal attention module and to infer the visual relations between the retrieved objects through a bilinear operator with the Visual Genome dataset. After training, the model’s language stream is a stand-alone language model capable of embedding concepts in a visually grounded semantic space. This semantic space manifests principal dimensions explainable with human intuition and neurobiological knowl- edge. Word embeddings in this semantic space are predictive of human-defined norms of semantic features and are segregated into perceptually distinctive clusters. Furthermore, the visually grounded language model also enables compositional language understanding based on visual knowledge and multimodal image search with queries based on images, texts, or their combinations.

Requirements

The model was trained with Python version: 3.7.4.

numpy==1.17.2, scipy==1.3.1, torch==1.7.1, torchvision==0.8.2, transformers==4.2.1, Pillow==6.2.0, tokenizers==0.9.4

Training

To train the model(s) in the paper, run the following commands:

stage-1: visual stream pretraining:

python visual_stream_pretraining.py \
-a vgg16_attention \
--pretrained \
--batch-size 200 \
--use-position learn \
--lr 0.01 \
/directory-to-ImageNet-dataset/ImageNet2012/

stage-2: two-stream grounding on MS COCO dataset with corss-modal contrastive loss:

python run.py \
--stage two_stream_pretraining \
--data-train /directory-to-COCO-dataset/COCO_train2017.json \
--data-val /directory-to-COCO-dataset/COCO_val2017.json \
--optim adam \
--learning-rate 5e-5 \
--batch-size 180 \
--n_epochs 100 \
--pretrained-vgg \
--image-model VGG16_Attention \
--use-position learn \
--language-model Bert_base \
--embedding-dim 768 \
--sigma 0.1 \
--dropout-rate 0.3 \
--base-model-learnable-layers 8 \
--load-pretrained /directory-to-pretrain-image-model/ \
--exp-dir /output-directory/two-stream-pretraining/

stage-3: visual relational grounding on Visual Genome dataset:

python run.py \
--stage relational_grounding \
--data-train /directory-to-Visual-Genome-dataset/VG_train_dataset_finalized.json \
--data-val /directory-to-Visual-Genome-dataset/VG_val_dataset_finalized.json \
--optim adam \
--learning-rate 1e-5 \
--batch-size 180 \
--n_epochs 150 \
--pretrained-vgg \
--image-model VGG16_Attention \
--use-position learn \
--language-model Bert_object \
--num-heads 8 \
--embedding-dim 768 \
--subspace-dim 32 \
--relation-num 115 \
--temperature 1 \
--dropout-rate 0.1 \
--base-model-learnable-layers 2 \
--load-pretrained /directory-to-pretrain-two-stream-model/ \
--exp-dir /output-directory/relational-grounding/

Transfer learning for cross-modal image search:

python transfer_cross_modal_retrieval.py \
--data-train /directory-to-COCO-dataset/COCO_train2017.json \
--data-val /directory-to-COCO-dataset/COCO_val2017.json \
--optim adam \
--learning-rate 5e-5 \
--batch-size 300 \
--n_epochs 150 \
--pretrained-vgg \
--image-model VGG16_Attention \
--use-position absolute_learn \
--language-model Bert_object \
--num-heads 8 \
--embedding-dim 768 \
--subspace-dim 32 \
--relation-num 115 \
--sigma 0.1 \
--dropout-rate 0.1 \
--load-pretrained /directory-to-pretrain-two-stream-model/ \
--exp-dir /output-directory/cross-modal-retrieval/

Evaluation

We include the jupyter notebook scripts for running evaluation tasks in our paper. See README in evaluation/.

😇A pyTorch implementation of the DeepMoji model: state-of-the-art deep learning model for analyzing sentiment, emotion, sarcasm etc

------ Update September 2018 ------ It's been a year since TorchMoji and DeepMoji were released. We're trying to understand how it's being used such t

Hugging Face 865 Dec 24, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation

Self-Supervised Generative Style Transfer for One-Shot Medical Image Segmentation This repository contains the Pytorch implementation of the proposed

Devavrat Tomar 19 Nov 10, 2022
Official implementation of paper Gradient Matching for Domain Generalization

Gradient Matching for Domain Generalisation This is the official PyTorch implementation of Gradient Matching for Domain Generalisation. In our paper,

94 Dec 23, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
COVID-Net Open Source Initiative

The COVID-Net models provided here are intended to be used as reference models that can be built upon and enhanced as new data becomes available

Linda Wang 1.1k Dec 26, 2022
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Inferring Lexicographically-Ordered Rewards from Preferences

Inferring Lexicographically-Ordered Rewards from Preferences Code author: Alihan Hüyük ([e

Alihan Hüyük 1 Feb 13, 2022
CC-GENERATOR - A python script for generating CC

CC-GENERATOR A python script for generating CC NOTE: This tool is for Educationa

Lêkzï 6 Oct 14, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022
Leaderboard and Visualization for RLCard

RLCard Showdown This is the GUI support for the RLCard project and DouZero project. RLCard-Showdown provides evaluation and visualization tools to hel

Data Analytics Lab at Texas A&M University 246 Dec 26, 2022
zeus is a Python implementation of the Ensemble Slice Sampling method.

zeus is a Python implementation of the Ensemble Slice Sampling method. Fast & Robust Bayesian Inference, Efficient Markov Chain Monte Carlo (MCMC), Bl

Minas Karamanis 197 Dec 04, 2022
Detection of PCBA defect

Detection_of_PCBA_defect Detection_of_PCBA_defect Use yolov5 to train. $pip install -r requirements.txt Detect.py will detect file(jpg,mp4...) in cu

6 Nov 28, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Memory-efficient optimum einsum using opt_einsum planning and PyTorch kernels.

opt-einsum-torch There have been many implementations of Einstein's summation. numpy's numpy.einsum is the least efficient one as it only runs in sing

Haoyan Huo 9 Nov 18, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

PFENet This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEE

DV Lab 230 Dec 31, 2022