Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

Overview

Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking

We revisit and address issues with Oxford 5k and Paris 6k image retrieval benchmarks. New annotation for both datasets is created with an extra attention to the reliability of the ground truth and three new protocols of varying difficulty are introduced. We additionally introduce 15 new challenging queries per dataset and a new set of 1M hard distractors.

This package provides support in downloading and using the new benchmark.

MATLAB

Tested with MATLAB R2017a on Debian 8.1.

Process images

This example script first downloads dataset images and the revisited annotation files. Then, it describes how to: read and process database images; read, crop and process query images:

>> example_process_images

Similarly, this example script first downloads one million images from the revisited distractor dataset (this can take a while). Then, it describes how to read and process images.

>> example_process_distractors

Evaluate results

Example script that describes how to evaluate according to the revisited annotation and the three protocol setups:

>> example_evaluate

It automatically downloads dataset images, the revisited annotation file, and example features (R-[37]-GeM from the paper) to be used in the evaluation. The final output should look like this (depending on the selected test_dataset):

>> roxford5k: mAP E: 84.81, M: 64.67, H: 38.47
>> roxford5k: [email protected][1 5 10] E: [97.06 92.06 86.49], M: [97.14 90.67 84.67], H: [81.43 63.00 53.00]

or

>> rparis6k: mAP E: 92.12, M: 77.20, H: 56.32
>> rparis6k: [email protected][1 5 10] E: [100.00 97.14 96.14], M: [100.00 98.86 98.14], H: [94.29 90.29 89.14]

Python

Tested with Python 3.5.3 on Debian 8.1.

Process images

This example script first downloads dataset images and the revisited annotation files. Then, it describes how to: read and process database images; read, crop and process query images:

>> python3 example_process_images

Similarly, this example script first downloads one million images from the revisited distractor dataset (this can take a while). Then, it describes how to read and process images.

>> python3 example_process_distractors

Evaluate results

Example script that describes how to evaluate according to the revisited annotation and the three protocol setups:

>> python3 example_evaluate

It automatically downloads dataset images, revisited annotation file, and example features (R-[37]-GeM from the paper) to be used in the evaluation. The final output should look like this (depending on the selected test_dataset):

>> roxford5k: mAP E: 84.81, M: 64.67, H: 38.47
>> roxford5k: [email protected][ 1  5 10] E: [97.06 92.06 86.49], M: [97.14 90.67 84.67], H: [81.43 63.   53.  ]

or

>> rparis6k: mAP E: 92.12, M: 77.2, H: 56.32
>> rparis6k: [email protected][ 1  5 10] E: [100.    97.14  96.14], M: [100.    98.86  98.14], H: [94.29 90.29 89.14]

Related publication

@inproceedings{RITAC18,
 author = {Radenovi\'{c}, F. and Iscen, A. and Tolias, G. and Avrithis, Y. and Chum, O.},
 title = {Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking},
 booktitle = {CVPR},
 year = {2018}
}
Owner
Filip Radenovic
Research Scientist at Facebook
Filip Radenovic
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
Official pytorch code for SSC-GAN: Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation(ICCV 2021)

SSC-GAN_repo Pytorch implementation for 'Semi-Supervised Single-Stage Controllable GANs for Conditional Fine-Grained Image Generation'.PDF SSC-GAN:Sem

tyty 4 Aug 28, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
[NeurIPS-2021] Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data

MosaicKD Code for NeurIPS-21 paper "Mosaicking to Distill: Knowledge Distillation from Out-of-Domain Data" 1. Motivation Natural images share common l

ZJU-VIPA 37 Nov 10, 2022
Milano is a tool for automating hyper-parameters search for your models on a backend of your choice.

Milano (This is a research project, not an official NVIDIA product.) Documentation https://nvidia.github.io/Milano Milano (Machine learning autotuner

NVIDIA Corporation 147 Dec 17, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
Stroke-predictions-ml-model - Machine learning model to predict individuals chances of having a stroke

stroke-predictions-ml-model machine learning model to predict individuals chance

Alex Volchek 1 Jan 03, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection

FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection FCOSR: A Simple Anchor-free Rotated Detector for Aerial Object Detection arXi

59 Nov 29, 2022
Self-supervised Augmentation Consistency for Adapting Semantic Segmentation (CVPR 2021)

Self-supervised Augmentation Consistency for Adapting Semantic Segmentation This repository contains the official implementation of our paper: Self-su

Visual Inference Lab @TU Darmstadt 132 Dec 21, 2022
Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data

Named Entity Recognition with Small Strongly Labeled and Large Weakly Labeled Data arXiv This is the code base for weakly supervised NER. We provide a

Amazon 92 Jan 04, 2023
Hyperbolic Procrustes Analysis Using Riemannian Geometry

Hyperbolic Procrustes Analysis Using Riemannian Geometry The code in this repository creates the figures presented in this article: Please notice that

Ronen Talmon's Lab 2 Jan 08, 2023
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Graph Convolutional Networks for Temporal Action Localization (ICCV2019)

Graph Convolutional Networks for Temporal Action Localization This repo holds the codes and models for the PGCN framework presented on ICCV 2019 Graph

Runhao Zeng 318 Dec 06, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023