Testbed of AI Systems Quality Management

Overview

qunomon

Description

A testbed for testing and managing AI system qualities.

Demo

Sorry. Not deployment public server at alpha version.

Requirement

Installation prerequisites

Support os is Windows10 Pro and macOS.

  • Windows10 Pro 1909 later
  • macOS v10.15 later

Installation

Usage

1.launch

Execute the following command as root of this repository.

docker-compose up

2.access web browser

http://127.0.0.1:8888/

Development for windows

Installation

1.PackageManager

  • Launch powershell with administrator permission.

  • powershell

    Set-ExecutionPolicy Bypass -Scope Process -Force; iex ((New-Object System.Net.WebClient).DownloadString('https://chocolatey.org/install.ps1'))
    

2.Python

  • powershell
    cinst python --version=3.6.8 -y
    

Setup python virtual environment for Backend

1.go to the source you checked out and create a virtual environment

  • launch command prompt
cd {checkout_dir}\src\backend
python -m venv venv

2.virtual environment activate

.\venv\Scripts\activate

3.install python package

pip install -r requirements_dev.txt

Setup python virtual environment for IP

1.go to the source you checked out and create a virtual environment

  • launch command prompt
cd {checkout_dir}\src\integration-provider
python -m venv venv

2.virtual environment activate

.\venv\Scripts\activate

3.install python package

pip install -r constraints.txt

launch by without container

1.execute bat file

start_up.bat

2.checking web browser

http://127.0.0.1:8080/

3.checking Backend

  • powershell
    curl http://127.0.0.1:5000/qai-testbed/api/0.0.1/health-check
    

4.checking IP

  • powershell
    curl http://127.0.0.1:6000/qai-ip/api/0.0.1/health-check
    

Contribution

Bug reports and pull requests are welcome on GitHub at aistairc/qunomon.

Disclaimer

qunomon is an OSS and alpha version. so qunomon may cause damage to your system and data. You agree to use it at your own risk.

License

Apache License Version 2.0

Author

AIST

You might also like...
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)
Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment This is a pytorch project for the paper Seeing Dynamic Scene i

Official PyTorch implementation of the paper
Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN", accepted to ACM MM 2021 BNI Track.

RecycleD Official PyTorch implementation of the paper "Recycling Discriminator: Towards Opinion-Unaware Image Quality Assessment Using Wasserstein GAN

[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment
[ICCV 2021] Group-aware Contrastive Regression for Action Quality Assessment

CoRe Created by Xumin Yu*, Yongming Rao*, Wenliang Zhao, Jiwen Lu, Jie Zhou This is the PyTorch implementation for ICCV paper Group-aware Contrastive

NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.
NUANCED is a user-centric conversational recommendation dataset that contains 5.1k annotated dialogues and 26k high-quality user turns.

NUANCED: Natural Utterance Annotation for Nuanced Conversation with Estimated Distributions Overview NUANCED is a user-centric conversational recommen

Cross Quality LFW: A database for Analyzing Cross-Resolution Image Face Recognition in Unconstrained Environments

Cross-Quality Labeled Faces in the Wild (XQLFW) Here, we release the database, evaluation protocol and code for the following paper: Cross Quality LFW

A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021.

SphereRPN Code for the paper SphereRPN: Learning Spheres for High-Quality Region Proposals on 3D Point Clouds Object Detection, ICIP 2021. Authors: Th

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Releases(0.1.15)
  • 0.1.15(Jun 25, 2021)

  • 0.1.14(Jun 8, 2021)

    Added

    #1462 SHAP AITの実装とテスト alyz_regression_shap_0.1 #1485 SHAP AIT plots_scatterの出力figにタイトル(カラムを対象)追加

    Fixed

    #1492 Dependabot alerts対応(urllib3) #1476 Dependabot alerts対応(TensorFlow2.4系から変更) #1465 AITパラメータ見直し(eval_adversarial_example_acc_test_tf2.3_0.1)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.13(May 26, 2021)

    Added

    #1434 クライテリア範囲外でTDを作成できないようにする(バックエンド) #1435 クライテリア範囲外でTDを作成できないようにする(フロントエンド) #1436 パラメータ範囲外でTDを作成できないようにする(フロントエンド) #1437 パラメータ範囲外でTDを作成できないようにする(バックエンド) #1438 インベントリチェック 警告ポップアップを表示する(フロントエンド) #1440 インベントリチェック ファイルフォーマットチェック(一般)

    Fixed

    #1423 AITパラメータ見直し(eval_dnn_coverage_tf1.13_0.1) #1425 AITパラメータ見直し(eval_mnist_acc_tf2.3_0.1) #1454 DependencyAlert解消(5/12)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.12(May 12, 2021)

    Added

    #1416 インベントリチェック ファイル存在チェック #1421 インベントリチェック TD実行時ハッシュチェック

    Fixed

    #1362 #1213の変更部分をテストコードに反映させる #1403 AIT発生エラー見直し AIT-SDK入れ替え #1432 GET TestRunnerでエンコードエラーログが出力される #1442 docker起動でインベントリ登録ができない #1447 DependencyAlert解消(5/10) #1452 pipインストールモジュールのバージョンを固定化する

    Source code(tar.gz)
    Source code(zip)
  • 0.1.11(Apr 28, 2021)

    Added

    #1370 AITの更新 (AITのパラメータ上限下限を表示する) #1374 ait-installerの更新 (AITのパラメータ上限下限を表示する)

    Fixed

    #1402 AIT発生エラー見直し AIT-SDK修正 #1404 AIT発生エラー見直し IP修正 #1405 AIT発生エラー見直し バックエンド修正 #1406 AIT発生エラー見直し フロントエンド修正 #1416 AIT発生エラー見直し AIT-SDK修正(出力先フォルダがない場合に対応)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.10(Apr 14, 2021)

    Added

    #1349 [TF3]MLComponent一覧画面でMLComponentを削除できるようにしたい

    Fixed

    #1385 DependencyAlert解消(3/26) #1391 DependencyAlert解消(4/2) #1361 #1335 により変更された部分をWEB API仕様書に反映をさせる

    Source code(tar.gz)
    Source code(zip)
  • 0.1.9(Mar 26, 2021)

    Added

    #1335 AITのパラメータ上限下限を表示する #144 TestDescription一覧画面の日付指定をカレンダーを用いて行う機能の実装

    Fixed

    なし

    Source code(tar.gz)
    Source code(zip)
  • 0.1.8(Mar 12, 2021)

    Added

    #1212 TD詳細画面-グラフを複数選択して追加したい #1340 TD詳細画面でairflowのログダウンロードURLリンクを表示する #1342 グラフ複数選択時に未登録のものだけを登録したい #1347 [TF3]TD一覧画面でTDを削除できるようにしたい

    Fixed

    #1331 何も選択していない状態で「add to Report」ボタンを押下できてしまう #1337 活性化判定をcheckAddBTNActiveメソッドで対応させるよう処理を統一 #1345 [TD詳細画面]追加グラフの数チェック不整合 #1348 [TD編集画面1]TDの再編集時にTD名のテキストボックスが入力1文字ごとにフォーカスが外れる #1336 docker-compose実行時に、ait-installerが実行されてない

    Source code(tar.gz)
    Source code(zip)
  • 0.1.7(Feb 26, 2021)

  • 0.1.6(Feb 12, 2021)

    Added

    #1200 AIF360の指標を取り込んだAITを作成する #1211 TD詳細画面-どのグラフを選択中か分かるようにしたい #1248 ait.manifest.jsonのreport.measuresにminとmaxを書く

    Fixed

    #1300 jupyter新バージョン3.X以後、AITのset_ait_descriptionにUnicodeEncodeError (漢字、など) #1305 TDでのレポート使用グラフを一つ削除すると、ソートがリセットされる #1312 Dependency alert解消(2/4)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.5(Jan 29, 2021)

    Added

    #1199 TDの品質指標に何を入れれば良いか分かりにくい問題を解消する #1213 [サマリ]manifestのresources,downloadsからpathを削除する

    Fixed

    #1262 eval_bdd100k_aicc_tf2.3のリソース「all_label_accuracy_csv」がタイプ「text」になっている #1272 ローカルにAITイメージがない状態で実行するとairflowでエラーになる #1277 Dependabot alerts解消(2021/1/15)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.4(Jan 15, 2021)

    Added

    #1213 manifestのresources,downloadsからpathを削除する

    Fixed

    #1208 レポートのレーダーチャートが、品質特性2以下だと数量が判別できない #1254 レポートのレーダーチャートの表示範囲が5で固定 #1260 Dependabot alerts解消(2021/1/8)

    Source code(tar.gz)
    Source code(zip)
  • 0.1.3(Dec 25, 2020)

    Added

    #1166 qlib新規作成

    Fixed

    #1183 TestDescriptionの中で大量の画像を扱うと画面が応答しない #1198 フロントエンド誤字修正 #1203 AITでresoucesに大量のデータをセットすると、TestDescription詳細画面やレポート出力が応答しない #1242 measures無しのAITを登録するとQualityDimensionが反映されない

    Source code(tar.gz)
    Source code(zip)
  • 0.1.2(Dec 10, 2020)

    Added

    #1171 インベントリの選択方法を改善する #1173 レポートのサマリでTD0件の品質特性は出力対象にしないようにする

    Fixed

    #1187 レポート出力時に2.1のレーダーチャートの項目名が長すぎると途中で切れる #1184 airflowのdocker buildが失敗する

    Source code(tar.gz)
    Source code(zip)
  • 0.1.1(Nov 27, 2020)

    Added

    #1071 確認ダイアログの多言語化対応 #1126 作成したAITをtestbedにdeployするツールが必要

    Fixed

    #1099 ブラウザバック、リロードでエラーが発生する画面がある #1123 内部品質名称を英語に変更する #1115 2つ以上あるmeasureのうち、一つだけチェックをいれてTDを作成するとエラーが発生する #1125 READMEの記述を修正(qai-testbed → qunomon) #1163 dag配下のフォルダを削除する #1156 docker-airflowのDockerfileの修正 #1157 Github security alert への対応

    Source code(tar.gz)
    Source code(zip)
ICLR 2021, Fair Mixup: Fairness via Interpolation

Fair Mixup: Fairness via Interpolation Training classifiers under fairness constraints such as group fairness, regularizes the disparities of predicti

Ching-Yao Chuang 49 Nov 22, 2022
Repository for the paper "Exploring the Sensory Spaces of English Perceptual Verbs in Natural Language Data"

Sensory Spaces of English Perceptual Verbs This repository contains the code and collocational data described in the paper "Exploring the Sensory Spac

David Peng 0 Sep 07, 2021
Implementation of paper "Towards a Unified View of Parameter-Efficient Transfer Learning"

A Unified Framework for Parameter-Efficient Transfer Learning This is the official implementation of the paper: Towards a Unified View of Parameter-Ef

Junxian He 216 Dec 29, 2022
Implementation for ACProp ( Momentum centering and asynchronous update for adaptive gradient methdos, NeurIPS 2021)

This repository contains code to reproduce results for submission NeurIPS 2021, "Momentum Centering and Asynchronous Update for Adaptive Gradient Meth

Juntang Zhuang 15 Jun 11, 2022
The materials used in the SaxonJS tutorial presented at Declarative Amsterdam, 2021

SaxonJS-Tutorial-2021, version 1.0.4 Last updated on 4 November, 2021. Table of contents Background Prerequisites Starting a web server Running a Java

Saxonica 11 Oct 23, 2022
using yolox+deepsort for object-tracker

YOLOX_deepsort_tracker yolox+deepsort实现目标跟踪 最新的yolox尝尝鲜~~(yolox正处在频繁更新阶段,因此直接链接yolox仓库作为子模块) Install Clone the repository recursively: git clone --rec

245 Dec 26, 2022
Python parser for DTED data.

DTED Parser This is a package written in pure python (with help from numpy) to parse and investigate Digital Terrain Elevation Data (DTED) files. This

Ben Bonenfant 12 Dec 18, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
Course materials for Fall 2021 "CIS6930 Topics in Computing for Data Science" at New College of Florida

Fall 2021 CIS6930 Topics in Computing for Data Science This repository hosts course materials used for a 13-week course "CIS6930 Topics in Computing f

Yoshi Suhara 101 Nov 30, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
A Keras implementation of YOLOv4 (Tensorflow backend)

keras-yolo4 请使用更完善的版本: https://github.com/miemie2013/Keras-YOLOv4 Please visit here for more complete model: https://github.com/miemie2013/Keras-YOLOv

384 Nov 29, 2022
Code release for "Making a Bird AI Expert Work for You and Me".

Making-a-Bird-AI-Expert-Work-for-You-and-Me Code release for "Making a Bird AI Expert Work for You and Me". arxiv (Coming soon...) Changelog 2021/12/6

PRIS-CV: Computer Vision Group 11 Dec 11, 2022
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
ViViT: Curvature access through the generalized Gauss-Newton's low-rank structure

ViViT is a collection of numerical tricks to efficiently access curvature from the generalized Gauss-Newton (GGN) matrix based on its low-rank structure. Provided functionality includes computing

Felix Dangel 12 Dec 08, 2022