Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Overview

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment

This is a pytorch project for the paper Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment by Ruixing Wang, Xiaogang Xu, Chi-Wing Fu, Jiangbo Lu, Bei Yu and Jiaya Jia presented at ICCV2021.

Introduction

It is important to enhance low-light videos where previous work is mostly trained on paired static images or paired videos of static scene. We instead propose a new dataset formed by our new strategies that contains high-quality spatially-aligned video pairs from dynamic scenes in low- and normal-light conditions. It is by building a mechatronic system to precisely control dynamics during the video capture process, and further align the video pairs, both spatially and temporally, by identifying the system's uniform motion stage. Besides the dataset, we also propose an end-to-end framework, in which we design a self-supervised strategy to reduce noise, while enhancing illumination based on the Retinex theory.

paper link

SDSD dataset

The SDSD dataset is collected as dynamic video pairs containing low-light and normal-light videos. This dataset is consists of two parts, i.e., the indoor subset and the outdoor subset. There are 70 video pairs in the indoor subset, and there are 80 video pairs in the outdoor subset.

All data is hosted on baidu pan (验证码: zcrb):
indoor_np: the data in the indoor subset utilized for training, all video frames are saved as .npy file and the resolution is 512 x 960 for fast training.
outdoor_np: the data in the outdoor subset utilized for training, all video frames are saved as .npy file and the resolution is 512 x 960 for fast training.
indoor_png: the original video data in the indoor subset. All frames are saved as .png file and the resolution is 1080 x 1920.
outdoor_png: the original video data in the outdoor subset. All frames are saved as .png file and the resolution is 1080 x 1920.

The evaluation setting could follow the following descriptions:

  1. randomly select 12 scenes from indoor subset and take others as the training data. The performance on indoor scene is computed on the first 30 frames in each of this 12 scenes, i.e., 360 frames.
  2. randomly select 13 scenes from outdoor subset and take others as the training data. The performance on indoor scene is computed on the first 30 frames in each of this 13 scenes, i.e., 390 frames. (the split of training and testing is pointed out by "testing_dir" in the corresponding config file)

The arrangement of the dataset is
--indoor/outdoor
----GT (the videos under normal light)
--------pair1
--------pair2
--------...
----LQ (the videos under low light)
--------pair1
--------pair2
--------...

After download the dataset, place them in './dataset' (you can also place the dataset in other place, once you modify "path_to_dataset" in the corresponding config file).

The smid dataset for training

Different from the original setting of SMID, our work aims to enhance sRGB videos rather than RAW videos. Thus, we first transfer the RAW data to sRGB data with rawpy. You can download the processed dataset for experiments using the following link: baidu pan (验证码: btux):

The arrangement of the dataset is
--smid
----SMID_Long_np (the frame under normal light)
--------0001
--------0002
--------...
----SMID_LQ_np (the frame under low light)
--------0001
--------0002
--------...

After download the dataset, place them in './dataset'. The arrangement of the dataset is the same as that of SDSD. You can also place the dataset in other place, once you modify "path_to_dataset" in the corresponding config file.

Project Setup

First install Python 3. We advise you to install Python 3 and PyTorch with Anaconda:

conda create --name py36 python=3.6
source activate py36

Clone the repo and install the complementary requirements:

cd $HOME
git clone --recursive [email protected]:dvlab-research/SDSD.git
cd SDSD
pip install -r requirements.txt

And compile the library of DCN:

python setup.py build
python setup.py develop
python setup.py install

Train

The training on indoor subset of SDSD:

python -m torch.distributed.launch --nproc_per_node 1 --master_port 4320 train.py -opt options/train/train_in_sdsd.yml --launcher pytorch

The training on outdoor subset of SDSD:

python -m torch.distributed.launch --nproc_per_node 1 --master_port 4320 train.py -opt options/train/train_out_sdsd.yml --launcher pytorch

The training on SMID:

python -m torch.distributed.launch --nproc_per_node 1 --master_port 4322 train.py -opt options/train/train_smid.yml --launcher pytorch

Quantitative Test

We use PSNR and SSIM as the metrics for evaluation.

For the evaluation on indoor subset of SDSD, you should write the location of checkpoint in "pretrain_model_G" of options/test/test_in_sdsd.yml use the following command line:

python quantitative_test.py -opt options/test/test_in_sdsd.yml

For the evaluation on outdoor subset of SDSD, you should write the location of checkpoint in "pretrain_model_G" of options/test/test_out_sdsd.yml use the following command line:

python quantitative_test.py -opt options/test/test_out_sdsd.yml

For the evaluation on SMID, you should write the location of checkpoint in "pretrain_model_G" of options/test/test_smid.yml use the following command line:

python quantitative_test.py -opt options/test/test_smid.yml

Pre-trained Model

You can download our trained model using the following links: https://drive.google.com/file/d/1_V0Dxtr4dZ5xZuOsU1gUIUYUDKJvj7BZ/view?usp=sharing

the model trained with indoor subset in SDSD: indoor_G.pth
the model trained with outdoor subset in SDSD: outdoor_G.pth
the model trained with SMID: smid_G.pth

Qualitative Test

We provide the script to visualize the enhanced frames. Please download the pretrained models or use your trained models, and then use the following command line

python qualitative_test.py -opt options/test/test_in_sdsd.yml
python qualitative_test.py -opt options/test/test_out_sdsd.yml
python qualitative_test.py -opt options/test/test_smid.yml

Citation Information

If you find the project useful, please cite:

@inproceedings{wang2021sdsd,
  title={Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment},
  author={Ruixing Wang, Xiaogang Xu, Chi-Wing Fu, Jiangbo Lu, Bei Yu and Jiaya Jia},
  booktitle={ICCV},
  year={2021}
}

Acknowledgments

This source code is inspired by EDVR.

Contributions

If you have any questions/comments/bug reports, feel free to e-mail the author Xiaogang Xu ([email protected]).

Owner
DV Lab
Deep Vision Lab
DV Lab
Measure WWjj polarization fraction

WlWl Polarization Measure WWjj polarization fraction Paper: arXiv:2109.09924 Notice: This code can only be used for the inference process, if you want

4 Apr 10, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
YOLOX-CondInst - Implement CondInst which is a instances segmentation method on YOLOX

YOLOX CondInst -- YOLOX 实例分割 前言 本项目是自己学习实例分割时,复现的代码. 通过自己编程,让自己对实例分割有更进一步的了解。 若想

DDGRCF 16 Nov 18, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Pytorch implementation of PCT: Point Cloud Transformer

PCT: Point Cloud Transformer This is a Pytorch implementation of PCT: Point Cloud Transformer.

Yi_Zhang 265 Dec 22, 2022
AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data

AdaSpeech 2: Adaptive Text to Speech with Untranscribed Data [WIP] Unofficial Pytorch implementation of AdaSpeech 2. Requirements : All code written i

Rishikesh (ऋषिकेश) 63 Dec 28, 2022
Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script.

clip-text-decoder Generate text captions for images from their CLIP embeddings. Includes PyTorch model code and example training script. Example Predi

Frank Odom 36 Dec 21, 2022
PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick." [Project page] [Paper

Gyungin Shin 59 Sep 25, 2022
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021)

SPDNet Structure-Preserving Deraining with Residue Channel Prior Guidance (ICCV2021) Requirements Linux Platform NVIDIA GPU + CUDA CuDNN PyTorch == 0.

41 Dec 12, 2022
Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works

GDAP Code for Generating Disentangled Arguments with Prompts: A Simple Event Extraction Framework that Works Environment Python (verified: v3.8) CUDA

45 Oct 29, 2022
🦕 NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano

🦕 nanosaur NanoSaur is a little tracked robot ROS2 enabled, made for an NVIDIA Jetson Nano Website: nanosaur.ai Do you need an help? Discord For tech

NanoSaur 162 Dec 09, 2022
This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA)

Description This is the repository of shape matching algorithm Iterative Rotations and Assignments (IRA), described in the publication [1]. Directory

MAMMASMIAS Consortium 6 Nov 14, 2022
PyTorch Implementation of Backbone of PicoDet

PicoDet-Backbone PyTorch Implementation of Backbone of PicoDet Original Implementation is implemented on PaddlePaddle. Example picodet_l_backbone = ES

Yonghye Kwon 7 Jul 12, 2022