Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment (ICCV2021)

Overview

Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment

This is a pytorch project for the paper Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment by Ruixing Wang, Xiaogang Xu, Chi-Wing Fu, Jiangbo Lu, Bei Yu and Jiaya Jia presented at ICCV2021.

Introduction

It is important to enhance low-light videos where previous work is mostly trained on paired static images or paired videos of static scene. We instead propose a new dataset formed by our new strategies that contains high-quality spatially-aligned video pairs from dynamic scenes in low- and normal-light conditions. It is by building a mechatronic system to precisely control dynamics during the video capture process, and further align the video pairs, both spatially and temporally, by identifying the system's uniform motion stage. Besides the dataset, we also propose an end-to-end framework, in which we design a self-supervised strategy to reduce noise, while enhancing illumination based on the Retinex theory.

paper link

SDSD dataset

The SDSD dataset is collected as dynamic video pairs containing low-light and normal-light videos. This dataset is consists of two parts, i.e., the indoor subset and the outdoor subset. There are 70 video pairs in the indoor subset, and there are 80 video pairs in the outdoor subset.

All data is hosted on baidu pan (验证码: zcrb):
indoor_np: the data in the indoor subset utilized for training, all video frames are saved as .npy file and the resolution is 512 x 960 for fast training.
outdoor_np: the data in the outdoor subset utilized for training, all video frames are saved as .npy file and the resolution is 512 x 960 for fast training.
indoor_png: the original video data in the indoor subset. All frames are saved as .png file and the resolution is 1080 x 1920.
outdoor_png: the original video data in the outdoor subset. All frames are saved as .png file and the resolution is 1080 x 1920.

The evaluation setting could follow the following descriptions:

  1. randomly select 12 scenes from indoor subset and take others as the training data. The performance on indoor scene is computed on the first 30 frames in each of this 12 scenes, i.e., 360 frames.
  2. randomly select 13 scenes from outdoor subset and take others as the training data. The performance on indoor scene is computed on the first 30 frames in each of this 13 scenes, i.e., 390 frames. (the split of training and testing is pointed out by "testing_dir" in the corresponding config file)

The arrangement of the dataset is
--indoor/outdoor
----GT (the videos under normal light)
--------pair1
--------pair2
--------...
----LQ (the videos under low light)
--------pair1
--------pair2
--------...

After download the dataset, place them in './dataset' (you can also place the dataset in other place, once you modify "path_to_dataset" in the corresponding config file).

The smid dataset for training

Different from the original setting of SMID, our work aims to enhance sRGB videos rather than RAW videos. Thus, we first transfer the RAW data to sRGB data with rawpy. You can download the processed dataset for experiments using the following link: baidu pan (验证码: btux):

The arrangement of the dataset is
--smid
----SMID_Long_np (the frame under normal light)
--------0001
--------0002
--------...
----SMID_LQ_np (the frame under low light)
--------0001
--------0002
--------...

After download the dataset, place them in './dataset'. The arrangement of the dataset is the same as that of SDSD. You can also place the dataset in other place, once you modify "path_to_dataset" in the corresponding config file.

Project Setup

First install Python 3. We advise you to install Python 3 and PyTorch with Anaconda:

conda create --name py36 python=3.6
source activate py36

Clone the repo and install the complementary requirements:

cd $HOME
git clone --recursive [email protected]:dvlab-research/SDSD.git
cd SDSD
pip install -r requirements.txt

And compile the library of DCN:

python setup.py build
python setup.py develop
python setup.py install

Train

The training on indoor subset of SDSD:

python -m torch.distributed.launch --nproc_per_node 1 --master_port 4320 train.py -opt options/train/train_in_sdsd.yml --launcher pytorch

The training on outdoor subset of SDSD:

python -m torch.distributed.launch --nproc_per_node 1 --master_port 4320 train.py -opt options/train/train_out_sdsd.yml --launcher pytorch

The training on SMID:

python -m torch.distributed.launch --nproc_per_node 1 --master_port 4322 train.py -opt options/train/train_smid.yml --launcher pytorch

Quantitative Test

We use PSNR and SSIM as the metrics for evaluation.

For the evaluation on indoor subset of SDSD, you should write the location of checkpoint in "pretrain_model_G" of options/test/test_in_sdsd.yml use the following command line:

python quantitative_test.py -opt options/test/test_in_sdsd.yml

For the evaluation on outdoor subset of SDSD, you should write the location of checkpoint in "pretrain_model_G" of options/test/test_out_sdsd.yml use the following command line:

python quantitative_test.py -opt options/test/test_out_sdsd.yml

For the evaluation on SMID, you should write the location of checkpoint in "pretrain_model_G" of options/test/test_smid.yml use the following command line:

python quantitative_test.py -opt options/test/test_smid.yml

Pre-trained Model

You can download our trained model using the following links: https://drive.google.com/file/d/1_V0Dxtr4dZ5xZuOsU1gUIUYUDKJvj7BZ/view?usp=sharing

the model trained with indoor subset in SDSD: indoor_G.pth
the model trained with outdoor subset in SDSD: outdoor_G.pth
the model trained with SMID: smid_G.pth

Qualitative Test

We provide the script to visualize the enhanced frames. Please download the pretrained models or use your trained models, and then use the following command line

python qualitative_test.py -opt options/test/test_in_sdsd.yml
python qualitative_test.py -opt options/test/test_out_sdsd.yml
python qualitative_test.py -opt options/test/test_smid.yml

Citation Information

If you find the project useful, please cite:

@inproceedings{wang2021sdsd,
  title={Seeing Dynamic Scene in the Dark: High-Quality Video Dataset with Mechatronic Alignment},
  author={Ruixing Wang, Xiaogang Xu, Chi-Wing Fu, Jiangbo Lu, Bei Yu and Jiaya Jia},
  booktitle={ICCV},
  year={2021}
}

Acknowledgments

This source code is inspired by EDVR.

Contributions

If you have any questions/comments/bug reports, feel free to e-mail the author Xiaogang Xu ([email protected]).

Owner
DV Lab
Deep Vision Lab
DV Lab
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Code for SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021)

SyncTwin: Treatment Effect Estimation with Longitudinal Outcomes (NeurIPS 2021) SyncTwin is a treatment effect estimation method tailored for observat

Zhaozhi Qian 3 Nov 03, 2022
Implement A3C for Mujoco gym envs

pytorch-a3c-mujoco Disclaimer: my implementation right now is unstable (you ca refer to the learning curve below), I'm not sure if it's my problems. A

Andrew 70 Dec 12, 2022
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
PyTorch implementation of residual gated graph ConvNets, ICLR’18

Residual Gated Graph ConvNets April 24, 2018 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbress

Xavier Bresson 112 Aug 10, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
PyTorch-Geometric Implementation of MarkovGNN: Graph Neural Networks on Markov Diffusion

MarkovGNN This is the official PyTorch-Geometric implementation of MarkovGNN paper under the title "MarkovGNN: Graph Neural Networks on Markov Diffusi

HipGraph: High-Performance Graph Analytics and Learning 6 Sep 23, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
Convert BART models to ONNX with quantization. 3X reduction in size, and upto 3X boost in inference speed

fast-Bart Reduction of BART model size by 3X, and boost in inference speed up to 3X BART implementation of the fastT5 library (https://github.com/Ki6a

Siddharth Sharma 19 Dec 09, 2022
Pytorch implementation of SimSiam Architecture

SimSiam-pytorch A simple pytorch implementation of Exploring Simple Siamese Representation Learning which is developed by Facebook AI Research (FAIR)

Saeed Shurrab 1 Oct 20, 2021
Honours project, on creating a depth estimation map from two stereo images of featureless regions

image-processing This module generates depth maps for shape-blocked-out images Install If working with anaconda, then from the root directory: conda e

2 Oct 17, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Code for CVPR2021 paper 'Where and What? Examining Interpretable Disentangled Representations'.

PS-SC GAN This repository contains the main code for training a PS-SC GAN (a GAN implemented with the Perceptual Simplicity and Spatial Constriction c

Xinqi/Steven Zhu 40 Dec 16, 2022
Install alphafold on the local machine, get out of docker.

AlphaFold This package provides an implementation of the inference pipeline of AlphaFold v2.0. This is a completely new model that was entered in CASP

Kui Xu 73 Dec 13, 2022
The first machine learning framework that encourages learning ML concepts instead of memorizing class functions.

SeaLion is designed to teach today's aspiring ml-engineers the popular machine learning concepts of today in a way that gives both intuition and ways of application. We do this through concise algori

Anish 324 Dec 27, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
MLSpace: Hassle-free machine learning & deep learning development

MLSpace: Hassle-free machine learning & deep learning development

abhishek thakur 293 Jan 03, 2023
Implementation for "Manga Filling Style Conversion with Screentone Variational Autoencoder" (SIGGRAPH ASIA 2020 issue)

Manga Filling with ScreenVAE SIGGRAPH ASIA 2020 | Project Website | BibTex This repository is for ScreenVAE introduced in the following paper "Manga F

30 Dec 24, 2022