The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

Overview

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might be broken and I definitely don't recommend to use any of the code in any sort of production application. However, for research purposes this code might be useful so I decided to open-source it. Use at your own risk!

Requirements

Use pip to install most requriements (pip install -r requriements.txt). Sometimes this causes problems if Cython, numpy and scipy are not already installed, in which case this needs to be done manually.

Additionally, some packages must be installed that are not provided by pip.

pySimox and pyMMM

pySimox and pyMMM must be installed manually as well. To build them, perform the following steps:

git submodule update --init --recursive
cd vendor/pySimox/build
cmake ..
make
cp _pysimox.so ../../../lib/python2.7/site-packages/_pysimox.so
cp pysimox.py ../../../lib/python2.7/site-packages/pysimox.py
cd ../pyMMM/build
cmake ..
make
cp _pymmm.so ../../../lib/python2.7/site-packages/_pymmm.so
cp pymmm.py ../../../lib/python2.7/site-packages/pymmm.py

Note that the installation script may need some fine-tuning. Additionally, this assumes that all virtualenv is set up in the root of this git repo.

Basic Usage

This repo contains two main programs: dataset.py and evaluate_new.py. All of them are located in src and should be run from this directory. There are some additional files in there, some of them are out-dated and should be deleted (e.g. evaluate.py), some of them are really just scripts and should be moved to the scripts folder eventually.

The dataset tool

The dataset tool is concerened with handling everything related to datasets: plot plots features, export saves a dataset in a variety of formats, report prints details about a dataset and check performs a consistency check. Additionally, export-all can be used to create a dataset that contains all features (normalized and unnormalized) by merging Vicon C3D and MMM files into one giant file. A couple of examples:

  • python dataset.py ../data/dataset1.json plot --features root_pos plots the root_pos feature of all motions in the dataset; the dataset can be a JSON manifest or a pickled dataset
  • python dataset.py ../data/dataset1.json export --output ~/export.pkl exports dataset1 as a single pickled file; usually a JSON manifest is used
  • python dataset.py ../data/dataset1.json export-all --output ~/export_all.pkl exports dataset1 by combining vicon and MMM files and by computing both the normalized and unnormalized version of all features. It also performs normalization on the vicon data by using additional information from the MMM data (namely the root_pos and root_rot); the dataset has to be a JSON manifest
  • python dataset.py ../data/dataset1.json report prints details about a dataset; the dataset can be a JSON manifest or a pickled dataset
  • python dataset.py ../data/dataset1.json check performs a consistency check of a dataset; the manifest has to be a JSON manifest

Additional parameters are avaialble for most commands. Use dataset --help to get an overview.

The evaluate_new tool

The evaluate_new tool can be used to perform feature selection (using the feature command) or to evaluate different types of models with decision makers (by using the model command). It is important to note that the evaluate_new tool expects a pickled version of the dataset, hence export or export_all must be used to prepare a dataset. This is to avoid the computational complexity.

A couple of examples:

  • python evaluate_new.py model ../data/export_all.pkl --features normalized_joint_pos normalized_root_pos --decision-maker log-regression --n-states 5 --model fhmm-seq --output-dir ~/out trains a HMM ensemble with each HMM having 5 states on the normalized_joint_pos and normalized_root_pos features and uses logistic regression to perform the final predicition. The results are also saved in the directory ~/out
  • python evaluate_new.py features ../data/export_all.pkl --features normalized_joint_pos normalized_root_pos --measure wasserstein performs feature selection using the starting set normalized_joint_pos normalized_root_pos and the wasserstein measure

From dataset to result

First, define a JSON manifest dataset.json that links together the individual motions and pick labels. Next, export the dataset by using python dataset.py ../data/dataset.json export-all --output ../data/dataset_all.pkl. If you need smoothing, simply load the dataset (using pickle.load()), call smooth_features() on the Dataset object and dump it to a new file. There's currently no script for this but it can be done using three lines and the interactive python interpreter. Next, perform feature selection using python evaluate_new.py features ../data/dataset_all.pkl --features <list of features> --measure wasserstein --output-dir ~/features --transformers minmax-scaler. You'll want to use the minmax scaler transformer to avoid numerical problems during training. This will probably take a while. The results (at ~/features) will give you the best feature subsets that were found. Next, use those features to train an HMM ensemble: python evaluate_new model ../data/dataset_all.pkl --features <best features> --model fhmm-seq --n-chains 2 --n-states 10 --n-training-iter 30 -decision-maker log-regression --transformers minmax-scaler --output-dir ~/train (again, the minmax-scaler is almost always a good idea). The results will be in ~/output.

Owner
Matthias Plappert
I am a research scientist working on machine learning, and especially deep reinforcement learning, in robotics.
Matthias Plappert
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Learning with Subset Stacking

Learning with Subset Stacking (LESS) LESS is a new supervised learning algorithm that is based on training many local estimators on subsets of a given

S. Ilker Birbil 19 Oct 04, 2022
Code and dataset for AAAI 2021 paper FixMyPose: Pose Correctional Describing and Retrieval Hyounghun Kim, Abhay Zala, Graham Burri, Mohit Bansal.

FixMyPose / फिक्समाइपोज़ Code and dataset for AAAI 2021 paper "FixMyPose: Pose Correctional Describing and Retrieval" Hyounghun Kim*, Abhay Zala*, Grah

4 Sep 19, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
Learning to Reconstruct 3D Manhattan Wireframes from a Single Image

Learning to Reconstruct 3D Manhattan Wireframes From a Single Image This repository contains the PyTorch implementation of the paper: Yichao Zhou, Hao

Yichao Zhou 50 Dec 27, 2022
Understanding Convolutional Neural Networks from Theoretical Perspective via Volterra Convolution

nnvolterra Run Code Compile first: make compile Run all codes: make all Test xconv: make npxconv_test MNIST dataset needs to be downloaded, converted

1 May 24, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment"

DSN-IQA Source code for paper "Deep Superpixel-based Network for Blind Image Quality Assessment" Requirements Python =3.8.0 Pytorch =1.7.1 Usage wit

7 Oct 13, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images

wrist-d PyTorch Implementation for Fracture Detection in Wrist Bone X-ray Images note: Paper: Under Review at MPDI Diagnostics Submission Date: Novemb

Fatih UYSAL 5 Oct 12, 2022
Siamese TabNet

Raifhack-DS-2021 https://raifhack.ru/ - Команда Звёздочка Siamese TabNet Сиамская TabNet предсказывает стоимость объекта недвижимости с price_type=1,

Daniel Gafni 15 Apr 16, 2022
Fast Axiomatic Attribution for Neural Networks (NeurIPS*2021)

Fast Axiomatic Attribution for Neural Networks This is the official repository accompanying the NeurIPS 2021 paper: R. Hesse, S. Schaub-Meyer, and S.

Visual Inference Lab @TU Darmstadt 11 Nov 21, 2022
Automatic tool focused on deriving metallicities of open clusters

metalcode Automatic tool focused on deriving metallicities of open clusters. Based on the method described in Pöhnl & Paunzen (2010, https://ui.adsabs

2 Dec 13, 2021
Use Python, OpenCV, and MediaPipe to control a keyboard with facial gestures

CheekyKeys A Face-Computer Interface CheekyKeys lets you control your keyboard using your face. View a fuller demo and more background on the project

69 Nov 09, 2022
Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021)

PGpoints Pytorch implementation of the paper Progressive Growing of Points with Tree-structured Generators (BMVC 2021) Hyeontae Son, Young Min Kim Pre

Hyeontae Son 9 Jun 06, 2022
A python library for face detection and features extraction based on mediapipe library

FaceAnalyzer A python library for face detection and features extraction based on mediapipe library Introduction FaceAnalyzer is a library based on me

Saifeddine ALOUI 14 Dec 30, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
GNEE - GAT Neural Event Embeddings

GNEE - GAT Neural Event Embeddings This repository contains source code for the GNEE (GAT Neural Event Embeddings) method introduced in the paper: "Se

João Pedro Rodrigues Mattos 0 Sep 15, 2021
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023