The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

Overview

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might be broken and I definitely don't recommend to use any of the code in any sort of production application. However, for research purposes this code might be useful so I decided to open-source it. Use at your own risk!

Requirements

Use pip to install most requriements (pip install -r requriements.txt). Sometimes this causes problems if Cython, numpy and scipy are not already installed, in which case this needs to be done manually.

Additionally, some packages must be installed that are not provided by pip.

pySimox and pyMMM

pySimox and pyMMM must be installed manually as well. To build them, perform the following steps:

git submodule update --init --recursive
cd vendor/pySimox/build
cmake ..
make
cp _pysimox.so ../../../lib/python2.7/site-packages/_pysimox.so
cp pysimox.py ../../../lib/python2.7/site-packages/pysimox.py
cd ../pyMMM/build
cmake ..
make
cp _pymmm.so ../../../lib/python2.7/site-packages/_pymmm.so
cp pymmm.py ../../../lib/python2.7/site-packages/pymmm.py

Note that the installation script may need some fine-tuning. Additionally, this assumes that all virtualenv is set up in the root of this git repo.

Basic Usage

This repo contains two main programs: dataset.py and evaluate_new.py. All of them are located in src and should be run from this directory. There are some additional files in there, some of them are out-dated and should be deleted (e.g. evaluate.py), some of them are really just scripts and should be moved to the scripts folder eventually.

The dataset tool

The dataset tool is concerened with handling everything related to datasets: plot plots features, export saves a dataset in a variety of formats, report prints details about a dataset and check performs a consistency check. Additionally, export-all can be used to create a dataset that contains all features (normalized and unnormalized) by merging Vicon C3D and MMM files into one giant file. A couple of examples:

  • python dataset.py ../data/dataset1.json plot --features root_pos plots the root_pos feature of all motions in the dataset; the dataset can be a JSON manifest or a pickled dataset
  • python dataset.py ../data/dataset1.json export --output ~/export.pkl exports dataset1 as a single pickled file; usually a JSON manifest is used
  • python dataset.py ../data/dataset1.json export-all --output ~/export_all.pkl exports dataset1 by combining vicon and MMM files and by computing both the normalized and unnormalized version of all features. It also performs normalization on the vicon data by using additional information from the MMM data (namely the root_pos and root_rot); the dataset has to be a JSON manifest
  • python dataset.py ../data/dataset1.json report prints details about a dataset; the dataset can be a JSON manifest or a pickled dataset
  • python dataset.py ../data/dataset1.json check performs a consistency check of a dataset; the manifest has to be a JSON manifest

Additional parameters are avaialble for most commands. Use dataset --help to get an overview.

The evaluate_new tool

The evaluate_new tool can be used to perform feature selection (using the feature command) or to evaluate different types of models with decision makers (by using the model command). It is important to note that the evaluate_new tool expects a pickled version of the dataset, hence export or export_all must be used to prepare a dataset. This is to avoid the computational complexity.

A couple of examples:

  • python evaluate_new.py model ../data/export_all.pkl --features normalized_joint_pos normalized_root_pos --decision-maker log-regression --n-states 5 --model fhmm-seq --output-dir ~/out trains a HMM ensemble with each HMM having 5 states on the normalized_joint_pos and normalized_root_pos features and uses logistic regression to perform the final predicition. The results are also saved in the directory ~/out
  • python evaluate_new.py features ../data/export_all.pkl --features normalized_joint_pos normalized_root_pos --measure wasserstein performs feature selection using the starting set normalized_joint_pos normalized_root_pos and the wasserstein measure

From dataset to result

First, define a JSON manifest dataset.json that links together the individual motions and pick labels. Next, export the dataset by using python dataset.py ../data/dataset.json export-all --output ../data/dataset_all.pkl. If you need smoothing, simply load the dataset (using pickle.load()), call smooth_features() on the Dataset object and dump it to a new file. There's currently no script for this but it can be done using three lines and the interactive python interpreter. Next, perform feature selection using python evaluate_new.py features ../data/dataset_all.pkl --features <list of features> --measure wasserstein --output-dir ~/features --transformers minmax-scaler. You'll want to use the minmax scaler transformer to avoid numerical problems during training. This will probably take a while. The results (at ~/features) will give you the best feature subsets that were found. Next, use those features to train an HMM ensemble: python evaluate_new model ../data/dataset_all.pkl --features <best features> --model fhmm-seq --n-chains 2 --n-states 10 --n-training-iter 30 -decision-maker log-regression --transformers minmax-scaler --output-dir ~/train (again, the minmax-scaler is almost always a good idea). The results will be in ~/output.

Owner
Matthias Plappert
I am a research scientist working on machine learning, and especially deep reinforcement learning, in robotics.
Matthias Plappert
Examples of how to create colorful, annotated equations in Latex using Tikz.

The file "eqn_annotate.tex" is the main latex file. This repository provides four examples of annotated equations: [example_prob.tex] A simple one ins

SyNeRCyS Research Lab 3.2k Jan 05, 2023
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
A self-supervised learning framework for audio-visual speech

AV-HuBERT (Audio-Visual Hidden Unit BERT) Learning Audio-Visual Speech Representation by Masked Multimodal Cluster Prediction Robust Self-Supervised A

Meta Research 431 Jan 07, 2023
[CVPR 2022] Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement

Back To Reality: Weak-supervised 3D Object Detection with Shape-guided Label Enhancement Announcement 🔥 We have not tested the code yet. We will fini

Xiuwei Xu 7 Oct 30, 2022
Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction

GraviCap Official code repository for ICCV 2021 paper: Gravity-Aware Monocular 3D Human Object Reconstruction. Gravity-Aware Monocular 3D Human-Object

Rishabh Dabral 15 Dec 09, 2022
ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation

ContourletNet: A Generalized Rain Removal Architecture Using Multi-Direction Hierarchical Representation (Accepted by BMVC'21) Abstract: Images acquir

10 Dec 08, 2022
Code for the paper "Asymptotics of â„“2 Regularized Network Embeddings"

README Code for the paper Asymptotics of L2 Regularized Network Embeddings. Requirements Requires Stellargraph 1.2.1, Tensorflow 2.6.0, scikit-learm 0

Andrew Davison 0 Jan 06, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
Stochastic Normalizing Flows

Stochastic Normalizing Flows We introduce stochasticity in Boltzmann-generating flows. Normalizing flows are exact-probability generative models that

AI4Science group, FU Berlin (Frank Noé and co-workers) 50 Dec 16, 2022
This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

CPC_DeepCluster This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEEC

LEAP Lab 2 Sep 15, 2022
aka "Bayesian Methods for Hackers": An introduction to Bayesian methods + probabilistic programming with a computation/understanding-first, mathematics-second point of view. All in pure Python ;)

Bayesian Methods for Hackers Using Python and PyMC The Bayesian method is the natural approach to inference, yet it is hidden from readers behind chap

Cameron Davidson-Pilon 25.1k Jan 02, 2023
Barbershop: GAN-based Image Compositing using Segmentation Masks (SIGGRAPH Asia 2021)

Barbershop: GAN-based Image Compositing using Segmentation Masks Barbershop: GAN-based Image Compositing using Segmentation Masks Peihao Zhu, Rameen A

Peihao Zhu 928 Dec 30, 2022
Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Official code release for "Learned Spatial Representations for Few-shot Talking-Head Synthesis" ICCV 2021

Moustafa Meshry 16 Oct 05, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation

Pytorch Implementation of Auto-Compressing Subset Pruning for Semantic Image Segmentation Introduction ACoSP is an online pruning algorithm that compr

Merantix 8 Dec 07, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
This is the workbook I created while I was studying for the Qiskit Associate Developer exam. I hope this becomes useful to others as it was for me :)

A Workbook for the Qiskit Developer Certification Exam Hello everyone! This is Bartu, a fellow Qiskitter. I have recently taken the Certification exam

Bartu Bisgin 66 Dec 10, 2022
SplineConv implementation for Paddle.

SplineConv implementation for Paddle This module implements the SplineConv operators from Matthias Fey, Jan Eric Lenssen, Frank Weichert, Heinrich Mül

北海若 3 Dec 29, 2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022