Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

Related tags

Deep Learninglasr
Overview

LASR

Installation

Build with conda

conda env create -f lasr.yml
conda activate lasr
# install softras
cd third_party/softras; python setup.py install; cd -;
# install manifold remeshing
git clone --recursive -j8 git://github.com/hjwdzh/Manifold; cd Manifold; mkdir build; cd build; cmake .. -DCMAKE_BUILD_TYPE=Release;make; cd ../../

For docker installation, please see install.md

Data preparation

Create folders to store data and training logs

mkdir log; mkdir tmp; 
Synthetic data

To render {silhouette, flow, rgb} observations of spot.

python scripts/render_syn.py
Real data (DAVIS)

First, download DAVIS 2017 trainval set and copy JPEGImages/Full-Resolution and Annotations/Full-Resolution folders of DAVIS-camel into the according folders in database.

cp ...davis-path/DAVIS/Annotations/Full-Resolution/camel/ -rf database/DAVIS/Annotations/Full-Resolution/
cp ...davis-path/DAVIS-lasr/DAVIS/JPEGImages/Full-Resolution/camel/ -rf database/DAVIS/JPEGImages/Full-Resolution/

Then download pre-trained VCN optical flow:

pip install gdown
mkdir ./lasr_vcn
gdown https://drive.google.com/uc?id=139S6pplPvMTB-_giI6V2dxpOHGqqAdHn -O ./lasr_vcn/vcn_rob.pth

Run VCN-robust to predict optical flow on DAVIS camel video:

bash preprocess/auto_gen.sh camel
Your own video

You will need to download and install detectron2 to obtain object segmentations as instructed below.

python -m pip install detectron2 -f \
  https://dl.fbaipublicfiles.com/detectron2/wheels/cu110/torch1.7/index.html

First, use any video processing tool (such as ffmpeg) to extract frames into JPEGImages/Full-Resolution/name-of-the-video.

mkdir database/DAVIS/JPEGImages/Full-Resolution/pika-tmp/
ffmpeg -ss 00:00:04 -i database/raw/IMG-7495.MOV -vf fps=10 database/DAVIS/JPEGImages/Full-Resolution/pika-tmp/%05d.jpg

Then, run pointrend to get segmentations:

cd preprocess
python mask.py pika path-to-detectron2-root; cd -

Assuming you have downloaded VCN flow in the previous step, run flow prediction:

bash preprocess/auto_gen.sh pika

Single video optimization

Synthetic spot Next, we want to optimize the shape, texture and camera parameters from image observartions. Optimizing spot takes ~20min on a single Titan Xp GPU.
bash scripts/spot3.sh

To render the optimized shape, texture and camera parameters

bash scripts/extract.sh spot3-1 10 1 26 spot3 no no
python render_vis.py --testdir log/spot3-1/ --seqname spot3 --freeze --outpath tmp/1.gif
DAVIS camel

Optimize on camel observations.

bash scripts/template.sh camel

To render optimized camel

bash scripts/render_result.sh camel
Costumized video (Pika)

Similarly, run the following steps to reconstruct pika

bash scripts/template.sh pika

To render reconstructed shape

bash scripts/render_result.sh pika
Monitor optimization

To monitor optimization, run

tensorboard --logdir log/

Example outputs

Evaluation

Run the following command to evaluate 3D shape accuracy for synthetic spot.

python scripts/eval_mesh.py --testdir log/spot3-1/ --gtdir database/DAVIS/Meshes/Full-Resolution/syn-spot3f/

Run the following command to evaluate keypoint accuracy on BADJA.

python scripts/eval_badja.py --testdir log/camel-5/ --seqname camel

Additional Notes

Other videos in DAVIS/BAJDA

Please refer to data preparation and optimization of the camel example, and modify camel to other sequence names, such as dance-twirl. We provide config files the configs folder.

Synthetic articulated objects

To render and reproduce results on articulated objects (Sec. 4.2), you will need to purchase and download 3D models here. We use blender to export animated meshes and run rendera_all.py:

python scripts/render_syn.py --outdir syn-dog-15 --nframes 15 --alpha 0.5 --model dog

Optimize on rendered observations

bash scripts/dog15.sh

To render optimized dog

bash scripts/render_result.sh dog
Batchsize

The current codebase is tested with batchsize=4. Batchsize can be modified in scripts/template.sh. Note decreasing the batchsize will improive speed but reduce the stability.

Distributed training

The current codebase supports single-node multi-gpu training with pytorch distributed data-parallel. Please modify dev and ngpu in scripts/template.sh to select devices.

Acknowledgement

The code borrows the skeleton of CMR

External repos:

External data:

Citation

To cite our paper,

@inproceedings{yang2021lasr,
  title={LASR: Learning Articulated Shape Reconstruction from a Monocular Video},
  author={Yang, Gengshan 
      and Sun, Deqing
      and Jampani, Varun
      and Vlasic, Daniel
      and Cole, Forrester
      and Chang, Huiwen
      and Ramanan, Deva
      and Freeman, William T
      and Liu, Ce},
  booktitle={CVPR},
  year={2021}
}  
Owner
Google
Google ❤️ Open Source
Google
Face2webtoon - Despite its importance, there are few previous works applying I2I translation to webtoon.

Despite its importance, there are few previous works applying I2I translation to webtoon. I collected dataset from naver webtoon 연애혁명 and tried to transfer human faces to webtoon domain.

이상윤 64 Oct 19, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

Recursive-NeRF: An Efficient and Dynamically Growing NeRF This is a Jittor implementation of Recursive-NeRF: An Efficient and Dynamically Growing NeRF

33 Nov 30, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Implementation of ECCV20 paper: the devil is in classification: a simple framework for long-tail object detection and instance segmentation

Implementation of our ECCV 2020 paper The Devil is in Classification: A Simple Framework for Long-tail Instance Segmentation This repo contains code o

twang 98 Sep 17, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
🔎 Monitor deep learning model training and hardware usage from your mobile phone 📱

Monitor deep learning model training and hardware usage from mobile. 🔥 Features Monitor running experiments from mobile phone (or laptop) Monitor har

labml.ai 1.2k Dec 25, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
the code for paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration"

EOW-Softmax This code is for the paper "Energy-Based Open-World Uncertainty Modeling for Confidence Calibration". Accepted by ICCV21. Usage Commnd exa

Yezhen Wang 36 Dec 02, 2022
Automatic Video Captioning Evaluation Metric --- EMScore

Automatic Video Captioning Evaluation Metric --- EMScore Overview For an illustration, EMScore can be computed as: Installation modify the encode_text

Yaya Shi 17 Nov 28, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees"

Companion code for "Bayesian logistic regression for online recalibration and revision of risk prediction models with performance guarantees" Installa

0 Oct 13, 2021
Python code to fuse multiple RGB-D images into a TSDF voxel volume.

Volumetric TSDF Fusion of RGB-D Images in Python This is a lightweight python script that fuses multiple registered color and depth images into a proj

Andy Zeng 845 Jan 03, 2023
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022