TyXe: Pyro-based BNNs for Pytorch users

Related tags

Deep LearningTyXe
Overview

TyXe: Pyro-based BNNs for Pytorch users

TyXe aims to simplify the process of turning Pytorch neural networks into Bayesian neural networks by leveraging the model definition and inference capabilities of Pyro. Our core design principle is to cleanly separate the construction of neural architecture, prior, inference distribution and likelihood, enabling a flexible workflow where each component can be exchanged independently. Defining a BNN in TyXe takes as little as 5 lines of code:

net = nn.Sequential(nn.Linear(1, 50), nn.Tanh(), nn.Linear(50, 1))
prior = tyxe.priors.IIDPrior(dist.Normal(0, 1))
likelihood = tyxe.likelihoods.HomoskedasticGaussian(scale=0.1)
inference = tyxe.guides.AutoNormal
bnn = tyxe.VariationalBNN(net, prior, likelihood, inference)

In the following, we assume that you (roughly) know what a BNN is mathematically.

Motivating example

Standard neural networks give us a single function that fits the data, but many different ones are typically plausible. With only a single fit, we don't know for what inputs the model is 'certain' (because there is training data nearby) and where it is uncertain.

ML Samples
Maximum likelihood fit Posterior samples

Implementing the former can be achieved easily in a few lines of Pytorch code, but training a BNN that gives a distribution over different fits is typically more complicated and is specifically what we aim to simplify.

Training

Constructing a BNN object has been shown in the example above. For fitting the posterior approximation, we provide a high-level .fit method similar to libraries such as scikit-learn or keras:

optim = pyro.optim.Adam({"lr": 1e-3})
bnn.fit(data_loader, optim, num_epochs)

Prediction & evaluation

Further we provide .predict and .evaluation methods, which make predictions based on multiple samples from the approximate posterior, average them based on the observation model, and return log likelihoods and an error measure:

predictions = bnn.predict(x_test, num_samples)
error, log_likelihood = bnn.evaluate(x_test, y_test, num_samples)

Local reparameterization

We implement local reparameterization for factorized Gaussians as a poutine, which reduces gradient noise during training. This means it can be enabled or disabled at both during training and prediction with a context manager:

with tyxe.poutine.local_reparameterization():
    bnn.fit(data_loader, optim, num_epochs)
    bnn.predict(x_test, num_predictions)

At the moment, this poutine does not work with the AutoNormal and AutoDiagonalNormal guides in pyro, since those draw the weights from a Delta distribution, so you need to use tyxe.guides.ParameterwiseDiagonalNormal as your guide.

MCMC

We provide a unified interface to pyro's MCMC implementations, simply use the tyxe.MCMC_BNN class instead and provide a kernel instead of the guide:

kernel = pyro.infer.mcmcm.NUTS
bnn = tyxe.MCMC_BNN(net, prior, likelihood, kernel)

Any parameters that pyro's MCMC class accepts can be passed through the keyword arguments of the .fit method.

Continual learning

Due to our design that cleanly separates the prior from guide, architecture and likelihood, it is easy to update it in a continual setting. For example, you can construct a tyxe.priors.DictPrior by extracting the distributions over all weights and biases from a ParameterwiseDiagonalNormal instance using the get_detached_distributions method and pass it to bnn.update_prior to implement Variational Continual Learning in a few lines of code. See examples/vcl.py for a basic example on split-MNIST and split-CIFAR.

Network architectures

We don't implement any layer classes. You construct your network in Pytorch and then turn it into a BNN, which makes it easy to apply the same prior and inference strategies to different neural networks.

Inference

For inference, we mainly provide an equivalent to pyro's AutoDiagonalNormal that is compatible with local reparameterization in tyxe.guides. This module also contains a few helper functions for initialization of Gaussian mean parameters, e.g. to the values of a pre-trained network. It should be possible to use any of pyro's autoguides for variational inference. See examples/resnet.py for a few options as well as initializing to pre-trained weights.

Priors

The priors can be found in tyxe.priors. We currently only support placing priors on the parameters. Through the expose and hide arguments in the init method you can specify layers, types of layers and specific parameters over which you want to place a prior. This helps, for example in learning the parameters of BatchNorm layers deterministically.

Likelihoods

tyxe.observation_models contains classes that wrap the most common torch.distributions for specifying noise models of data to

Installation

We recommend installing TyXe using conda with the provided environment.yml, which also installs all the dependencies for the examples except for Pytorch3d, which needs to be added manually. The environment assumes that you are using CUDA11.0, if this is not the case, simply change the cudatoolkit and dgl-cuda versions before running:

conda env create -f environment.yml
conda activate tyxe
pip install -e .

Citation

If you use TyXe, please consider citing:

@article{ritter2021tyxe,
  author    = {Hippolyt Ritter and
               Theofanis Karaletsos
               },
  title     = {TyXe: Pyro-based Bayesian neural nets for Pytorch},
  journal   = {International Conference on Probabilistic Programming (ProbProg)},
  volume    = {},
  pages     = {},
  year      = {2020},
  url       = {https://arxiv.org/abs/2110.00276}
}
No-reference Image Quality Assessment(NIQA) Algorithms (BRISQUE, NIQE, PIQE, RankIQA, MetaIQA)

No-Reference Image Quality Assessment Algorithms No-reference Image Quality Assessment(NIQA) is a task of evaluating an image without a reference imag

Dae-Young Song 26 Jan 04, 2023
This is an official implementation for "ResT: An Efficient Transformer for Visual Recognition".

ResT By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software Technology at Nanjing University] This repo is the official implement

zhql 222 Dec 13, 2022
Wenzhou-Kean University AI-LAB

AI-LAB This is Wenzhou-Kean University AI-LAB. Our research interests are in Computer Vision and Natural Language Processing. Computer Vision Please g

WKU AI-LAB 10 May 05, 2022
Source code for the paper: Variance-Aware Machine Translation Test Sets (NeurIPS 2021 Datasets and Benchmarks Track)

Variance-Aware-MT-Test-Sets Variance-Aware Machine Translation Test Sets License See LICENSE. We follow the data licensing plan as the same as the WMT

NLP2CT Lab, University of Macau 5 Dec 21, 2021
Hitters Linear Regression - Hitters Linear Regression With Python

Hitters_Linear_Regression Kullanacağımız veri seti Carnegie Mellon Üniversitesi'

AyseBuyukcelik 2 Jan 26, 2022
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
Implementation of light baking system for ray tracing based on Activision's UberBake

Vulkan Light Bakary MSU Graphics Group Student's Diploma Project Treefonov Andrey [GitHub] [LinkedIn] Project Goal The goal of the project is to imple

Andrey Treefonov 7 Dec 27, 2022
Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces

This repository contains source code for the paper Combining Latent Space and Structured Kernels for Bayesian Optimization over Combinatorial Spaces a

9 Nov 21, 2022
⚓ Eurybia monitor model drift over time and securize model deployment with data validation

View Demo · Documentation · Medium article 🔍 Overview Eurybia is a Python library which aims to help in : Detecting data drift and model drift Valida

MAIF 172 Dec 27, 2022
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
ICS 4u HD project, start before-wards. A curtain shooting game using python.

Touhou-Star-Salvation HDCH ICS 4u HD project, start before-wards. A curtain shooting game using python and pygame. By Jason Li For arts and gameplay,

15 Dec 22, 2022
Sum-Product Probabilistic Language

Sum-Product Probabilistic Language SPPL is a probabilistic programming language that delivers exact solutions to a broad range of probabilistic infere

MIT Probabilistic Computing Project 57 Nov 17, 2022
Portfolio asset allocation strategies: from Markowitz to RNNs

Portfolio asset allocation strategies: from Markowitz to RNNs Research project to explore different approaches for optimal portfolio allocation starti

Luigi Filippo Chiara 1 Feb 05, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Official code for the paper "Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks".

Why Do Self-Supervised Models Transfer? Investigating the Impact of Invariance on Downstream Tasks This repository contains the official code for the

Linus Ericsson 11 Dec 16, 2022
Code for the paper Task Agnostic Morphology Evolution.

Task-Agnostic Morphology Optimization This repository contains code for the paper Task-Agnostic Morphology Evolution by Donald (Joey) Hejna, Pieter Ab

Joey Hejna 18 Aug 04, 2022
Fantasy Points Prediction and Dream Team Formation

Fantasy-Points-Prediction-and-Dream-Team-Formation Collected Data from open source resources that have over 100 Parameters for predicting cricket play

Akarsh Singh 2 Sep 13, 2022
Implementation of Feedback Transformer in Pytorch

Feedback Transformer - Pytorch Simple implementation of Feedback Transformer in Pytorch. They improve on Transformer-XL by having each token have acce

Phil Wang 93 Oct 04, 2022
This is an official implementation for "SimMIM: A Simple Framework for Masked Image Modeling".

SimMIM By Zhenda Xie*, Zheng Zhang*, Yue Cao*, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai and Han Hu*. This repo is the official implementation of

Microsoft 674 Dec 26, 2022
A Pytorch implementation of CVPR 2021 paper "RSG: A Simple but Effective Module for Learning Imbalanced Datasets"

RSG: A Simple but Effective Module for Learning Imbalanced Datasets (CVPR 2021) A Pytorch implementation of our CVPR 2021 paper "RSG: A Simple but Eff

120 Dec 12, 2022