This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

Overview

CPC_DeepCluster

This is the implementation of "SELF SUPERVISED REPRESENTATION LEARNING WITH DEEP CLUSTERING FOR ACOUSTIC UNIT DISCOVERY FROM RAW SPEECH" submitted to ICASSP 2022

setup instructions

  1. Clone the repo: https://github.com/iiscleap/CPC_DeepCluster.git

  2. Install libraries which would be required for torch-audio https://github.com/pytorch/audio :

  • Linux: sudo apt-get install sox libsox-dev libsox-fmt-all
  1. conda env create -f environment.yml && conda activate cpc37

  2. Run setup.py python setup.py develop

Using the Repository

To start the training :

python cpc/train_mod.py --pathDB $PATH_AUDIO_FILES --pathCheckpoint $PATH_CHECKPOINT_DIR --LabelsPath $Path_Pseudo_Labels --file_extension $EXTENSION --normMode batchNormn--rnnMode linear --nLevelsGRU 2 --max_size_loaded 1000000000 --save_step 1 --alpha_val $Cluster_Loss_Weighting

Where:

  • $PATH_AUDIO_FILES is the directory containing the audio files. The files should be arranged as below:
PATH_AUDIO_FILES
│
└───speaker1
│   └───...
│         │   seq_11.{$EXTENSION}
│         │   seq_12.{$EXTENSION}
│         │   ...
│
└───speaker2
    └───...
          │   seq_21.{$EXTENSION}
          │   seq_22.{$EXTENSION}
  • $PATH_CHECKPOINT_DIR in the directory where the checkpoints will be saved
  • $EXTENSION is the extension of each audio file
  • $Path_Pseudo_Labels is the directory that contains the psuedo labels of all the audio files in $PATH_AUDIO_FILES
  • $Cluster_Loss_Weighting provides the weighting factor for the cluster loss.

Restarting the session

To restart a session from the last save checkpoint run

python cpc/train_mod.py --pathCheckpoint $PATH_CHECKPOINT_DIR

Generating the pseudo labels for training

Create quantized.txt using the repository here

python create_pseudolabels.py --input_file $Path_Containing_quantized.txt --out_path $Output_Dir
  • $Output_Dir is the directory where .pt files containing pseudo labels

Extracting features, training K Means and Language Models

Extract the features for K means clustering and train K Means clustering, Language models using the repository here

Owner
LEAP Lab
Learning and Extraction of Acoustic Patterns
LEAP Lab
A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks)

A PyTorch implementation for PyramidNets (Deep Pyramidal Residual Networks) This repository contains a PyTorch implementation for the paper: Deep Pyra

Greg Dongyoon Han 262 Jan 03, 2023
Rasterize with the least efforts for researchers.

utils3d Rasterize and do image-based 3D transforms with the least efforts for researchers. Based on numpy and OpenGL. It could be helpful when you wan

Ruicheng Wang 8 Dec 15, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

Revitalizing CNN Attention via Transformers in Self-Supervised Visual Representation Learning

ChongjianGE 89 Dec 02, 2022
A trusty face recognition research platform developed by Tencent Youtu Lab

Introduction TFace: A trusty face recognition research platform developed by Tencent Youtu Lab. It provides a high-performance distributed training fr

Tencent 956 Jan 01, 2023
FcaNet: Frequency Channel Attention Networks

FcaNet: Frequency Channel Attention Networks PyTorch implementation of the paper "FcaNet: Frequency Channel Attention Networks". Simplest usage Models

327 Dec 27, 2022
Source code of NeurIPS 2021 Paper ''Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration''

CaGCN This repo is for source code of NeurIPS 2021 paper "Be Confident! Towards Trustworthy Graph Neural Networks via Confidence Calibration". Paper L

6 Dec 19, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
Kaggle DSTL Satellite Imagery Feature Detection

Kaggle DSTL Satellite Imagery Feature Detection

Konstantin Lopuhin 206 Oct 29, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
An Artificial Intelligence trying to drive a car by itself on a user created map

An Artificial Intelligence trying to drive a car by itself on a user created map

Akhil Sahukaru 17 Jan 13, 2022
📚 Papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks.

papermill is a tool for parameterizing, executing, and analyzing Jupyter Notebooks. Papermill lets you: parameterize notebooks execute notebooks This

nteract 5.1k Jan 03, 2023
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
Does Pretraining for Summarization Reuqire Knowledge Transfer?

Pretraining summarization models using a corpus of nonsense

Approximately Correct Machine Intelligence (ACMI) Lab 12 Dec 19, 2022
Labels4Free: Unsupervised Segmentation using StyleGAN

Labels4Free: Unsupervised Segmentation using StyleGAN ICCV 2021 Figure: Some segmentation masks predicted by Labels4Free Framework on real and synthet

70 Dec 23, 2022
Official implementation of VaxNeRF (Voxel-Accelearated NeRF).

VaxNeRF Paper | Google Colab This is the official implementation of VaxNeRF (Voxel-Accelearated NeRF). VaxNeRF provides very fast training and slightl

naruya 132 Nov 21, 2022
Oriented Object Detection: Oriented RepPoints + Swin Transformer/ReResNet

Oriented RepPoints for Aerial Object Detection The code for the implementation of “Oriented RepPoints + Swin Transformer/ReResNet”. Introduction Based

96 Dec 13, 2022
This tutorial repository is to introduce the functionality of KGTK to first-time users

Welcome to the KGTK notebook tutorial The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledg

USC ISI I2 58 Dec 21, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022