PixelPick This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

Overview

PixelPick

This is an official implementation of the paper "All you need are a few pixels: semantic segmentation with PixelPick."

[Project page] [Paper]

Table of contents

Abstract

A central challenge for the task of semantic segmentation is the prohibitive cost of obtaining dense pixel-level annotations to supervise model training. In this work, we show that in order to achieve a good level of segmentation performance, all you need are a few well-chosen pixel labels. We make the following contributions: (i) We investigate the novel semantic segmentation setting in which labels are supplied only at sparse pixel locations, and show that deep neural networks can use a handful of such labels to good effect; (ii) We demonstrate how to exploit this phenomena within an active learning framework, termed PixelPick, to radically reduce labelling cost, and propose an efficient “mouse-free” annotation strategy to implement our approach; (iii) We conduct extensive experiments to study the influence of annotation diversity under a fixed budget, model pretraining, model capacity and the sampling mechanism for picking pixels in this low annotation regime; (iv) We provide comparisons to the existing state of the art in semantic segmentation with active learning, and demonstrate comparable performance with up to two orders of magnitude fewer pixel annotations on the CamVid, Cityscapes and PASCAL VOC 2012 benchmarks; (v) Finally, we evaluate the efficiency of our annotation pipeline and its sensitivity to annotator error to demonstrate its practicality. Our code, models and annotation tool will be made publicly available.

Installation

Prerequisites

Our code is based on Python 3.8 and uses the following Python packages.

torch>=1.8.1
torchvision>=0.9.1
tqdm>=4.59.0
cv2>=4.5.1.48
Clone this repository
git clone https://github.com/NoelShin/PixelPick.git
cd PixelPick
Download dataset

Follow one of the instructions below to download a dataset you are interest in. Then, set the dir_dataset variable in args.py to the directory path which contains the downloaded dataset.

  • For CamVid, you need to download SegNet-Tutorial codebase as a zip file and use CamVid directory which contains images/annotations for training and test after unzipping it. You don't need to change the directory structure. [CamVid]

  • For Cityscapes, first visit the link and login to download. Once downloaded, you need to unzip it. You don't need to change the directory structure. It is worth noting that, if you set downsample variable in args.py (4 by default), it will first downsample train and val images of Cityscapes and store them within {dir_dataset}_d{downsample} folder which will be located in the same directory of dir_dataset. This is to enable a faster dataloading during training. [Cityscapes]

  • For PASCAL VOC 2012, the dataset will be automatically downloaded via torchvision.datasets.VOCSegmentation. You just need to specify which directory you want to download it with dir_dataset variable. If the automatic download fails, you can manually download through the following page (you don't need to untar VOCtrainval_11-May-2012.tar file which will be downloaded). [PASCAL VOC 2012 segmentation]

For more details about the data we used to train/validate our model, please visit datasets directory and find {camvid, cityscapes, voc}_{train, val}.txt file.

Train and validate

By default, the current code validates the model every epoch while training. To train a MobileNetv2-based DeepLabv3+ network, follow the below lines. (The pretrained MobileNetv2 will be loaded automatically.)

cd scripts
sh pixelpick-dl-cv.sh

Benchmark results

For CamVid and Cityscapes, we report the average of 5 different runs and 3 different runs for PASCAL VOC 2012. Please refer to our paper for details. ± one std of mean IoU is denoted.

CamVid
model backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%)
PixelPick MobileNetv2 20 (0.012) 50.8 ± 0.2
PixelPick MobileNetv2 40 (0.023) 53.9 ± 0.7
PixelPick MobileNetv2 60 (0.035) 55.3 ± 0.5
PixelPick MobileNetv2 80 (0.046) 55.2 ± 0.7
PixelPick MobileNetv2 100 (0.058) 55.9 ± 0.1
Fully-supervised MobileNetv2 360x480 (100) 58.2 ± 0.6
PixelPick ResNet50 20 (0.012) 59.7 ± 0.9
PixelPick ResNet50 40 (0.023) 62.3 ± 0.5
PixelPick ResNet50 60 (0.035) 64.0 ± 0.3
PixelPick ResNet50 80 (0.046) 64.4 ± 0.6
PixelPick ResNet50 100 (0.058) 65.1 ± 0.3
Fully-supervised ResNet50 360x480 (100) 67.8 ± 0.3
Cityscapes

Note that to make training time manageable, we train on the quarter resolution (256x512) of the original Cityscapes images (1024x2048).

model backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%)
PixelPick MobileNetv2 20 (0.015) 52.0 ± 0.6
PixelPick MobileNetv2 40 (0.031) 54.7 ± 0.4
PixelPick MobileNetv2 60 (0.046) 55.5 ± 0.6
PixelPick MobileNetv2 80 (0.061) 56.1 ± 0.3
PixelPick MobileNetv2 100 (0.076) 56.5 ± 0.3
Fully-supervised MobileNetv2 256x512 (100) 61.4 ± 0.5
PixelPick ResNet50 20 (0.015) 56.1 ± 0.4
PixelPick ResNet50 40 (0.031) 60.0 ± 0.3
PixelPick ResNet50 60 (0.046) 61.6 ± 0.4
PixelPick ResNet50 80 (0.061) 62.3 ± 0.4
PixelPick ResNet50 100 (0.076) 62.8 ± 0.4
Fully-supervised ResNet50 256x512 (100) 68.5 ± 0.3
PASCAL VOC 2012
model backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%)
PixelPick MobileNetv2 10 (0.009) 51.7 ± 0.2
PixelPick MobileNetv2 20 (0.017) 53.9 ± 0.8
PixelPick MobileNetv2 30 (0.026) 56.7 ± 0.3
PixelPick MobileNetv2 40 (0.034) 56.9 ± 0.7
PixelPick MobileNetv2 50 (0.043) 57.2 ± 0.3
Fully-supervised MobileNetv2 N/A (100) 57.9 ± 0.5
PixelPick ResNet50 10 (0.009) 59.7 ± 0.8
PixelPick ResNet50 20 (0.017) 65.6 ± 0.5
PixelPick ResNet50 30 (0.026) 66.4 ± 0.2
PixelPick ResNet50 40 (0.034) 67.2 ± 0.1
PixelPick ResNet50 50 (0.043) 67.4 ± 0.5
Fully-supervised ResNet50 N/A (100) 69.4 ± 0.3

Models

model dataset backbone (encoder) # labelled pixels per img (% annotation) mean IoU (%) Download
PixelPick CamVid MobileNetv2 100 (0.058) 56.1 Link
PixelPick CamVid ResNet50 100 (0.058) TBU TBU
PixelPick Cityscapes MobileNetv2 100 (0.076) 56.8 Link
PixelPick Cityscapes ResNet50 100 (0.076) 63.3 Link
PixelPick VOC 2012 MobileNetv2 50 (0.043) 57.4 Link
PixelPick VOC 2012 ResNet50 50 (0.043) 68.0 Link

PixelPick mouse-free annotation tool

Code for the annotation tool will be made available.

Citation

To be updated.

Acknowledgements

We borrowed code for the MobileNetv2-based DeepLabv3+ network from https://github.com/Shuai-Xie/DEAL.

If you have any questions, please contact us at {gyungin, weidi, samuel}@robots.ox.ac.uk.

Owner
Gyungin Shin
Serving others
Gyungin Shin
Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP 2021.

The Stem Cell Hypothesis Codes for our paper The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders published to EMNLP

Emory NLP 5 Jul 08, 2022
Deep Face Recognition in PyTorch

Face Recognition in PyTorch By Alexey Gruzdev and Vladislav Sovrasov Introduction A repository for different experimental Face Recognition models such

Alexey Gruzdev 141 Sep 11, 2022
N-gram models- Unsmoothed, Laplace, Deleted Interpolation

N-gram models- Unsmoothed, Laplace, Deleted Interpolation

Ravika Nagpal 1 Jan 04, 2022
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
SymPy-powered, Wolfram|Alpha-like answer engine totally in your browser, without backend computation

SymPy Beta SymPy Beta is a fork of SymPy Gamma. The purpose of this project is to run a SymPy-powered, Wolfram|Alpha-like answer engine totally in you

Liumeo 25 Dec 21, 2022
Memory Efficient Attention (O(sqrt(n)) for Jax and PyTorch

Memory Efficient Attention This is unofficial implementation of Self-attention Does Not Need O(n^2) Memory for Jax and PyTorch. Implementation is almo

Amin Rezaei 126 Dec 27, 2022
Elastic weight consolidation technique for incremental learning.

Overcoming-Catastrophic-forgetting-in-Neural-Networks Elastic weight consolidation technique for incremental learning. About Use this API if you dont

Shivam Saboo 89 Dec 22, 2022
Multistream CNN for Robust Acoustic Modeling

Multistream Convolutional Neural Network (CNN) A multistream CNN is a novel neural network architecture for robust acoustic modeling in speech recogni

ASAPP Research 37 Sep 21, 2022
A library for preparing, training, and evaluating scalable deep learning hybrid recommender systems using PyTorch.

collie_recs Collie is a library for preparing, training, and evaluating implicit deep learning hybrid recommender systems, named after the Border Coll

ShopRunner 97 Jan 03, 2023
This repo includes the supplementary of our paper "CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels"

Supplementary Materials for CEMENT: Incomplete Multi-View Weak-Label Learning with Long-Tailed Labels This repository includes all supplementary mater

Zhiwei Li 0 Jan 05, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
Robot Hacking Manual (RHM). From robotics to cybersecurity. Papers, notes and writeups from a journey into robot cybersecurity.

RHM: Robot Hacking Manual Download in PDF RHM v0.4 ┃ Read online The Robot Hacking Manual (RHM) is an introductory series about cybersecurity for robo

Víctor Mayoral Vilches 233 Dec 30, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi-Object Segmentation

ClevrTex This repository contains dataset generation code for ClevrTex benchmark from paper: ClevrTex: A Texture-Rich Benchmark for Unsupervised Multi

Laurynas Karazija 26 Dec 21, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

Nicely is a real-time Feedback and Intervention Program Depression is a prevalent issue across all age groups, socioeconomic classes, and cultural identities.

1 Jan 16, 2022
Long Expressive Memory (LEM)

Long Expressive Memory for Sequence Modeling This repository contains the implementation to reproduce the numerical experiments of the paper Long Expr

Konstantin Rusch 47 Dec 17, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022