Pytorch implementation of TailCalibX : Feature Generation for Long-tail Classification

Overview

TailCalibX : Feature Generation for Long-tail Classification

by Rahul Vigneswaran, Marc T. Law, Vineeth N. Balasubramanian, Makarand Tapaswi

[arXiv] [Code] [pip Package] [Video] TailCalibX methodology

Table of contents

๐Ÿฃ Easy Usage (Recommended way to use our method)

โš  Caution: TailCalibX is just TailCalib employed multiple times. Specifically, we generate a set of features once every epoch and use them to train the classifier. In order to mimic that, three things must be done at every epoch in the following order:

  1. Collect all the features from your dataloader.
  2. Use the tailcalib package to make the features balanced by generating samples.
  3. Train the classifier.
  4. Repeat.

๐Ÿ’ป Installation

Use the package manager pip to install tailcalib.

pip install tailcalib

๐Ÿ‘จโ€๐Ÿ’ป Example Code

Check the instruction here for a much more detailed python package information.

# Import
from tailcalib import tailcalib

# Initialize
a = tailcalib(base_engine="numpy")   # Options: "numpy", "pytorch"

# Imbalanced random fake data
import numpy as np
X = np.random.rand(200,100)
y = np.random.randint(0,10, (200,))

# Balancing the data using "tailcalib"
feat, lab, gen = a.generate(X=X, y=y)

# Output comparison
print(f"Before: {np.unique(y, return_counts=True)}")
print(f"After: {np.unique(lab, return_counts=True)}")

๐Ÿงช Advanced Usage

โœ” Things to do before you run the code from this repo

  • Change the data_root for your dataset in main.py.
  • If you are using wandb logging (Weights & Biases), make sure to change the wandb.init in main.py accordingly.

๐Ÿ“€ How to use?

  • For just the methods proposed in this paper :
    • For CIFAR100-LT: run_TailCalibX_CIFAR100-LT.sh
    • For mini-ImageNet-LT : run_TailCalibX_mini-ImageNet-LT.sh
  • For all the results show in the paper :
    • For CIFAR100-LT: run_all_CIFAR100-LT.sh
    • For mini-ImageNet-LT : run_all_mini-ImageNet-LT.sh

๐Ÿ“š How to create the mini-ImageNet-LT dataset?

Check Notebooks/Create_mini-ImageNet-LT.ipynb for the script that generates the mini-ImageNet-LT dataset with varying imbalance ratios and train-test-val splits.

โš™ Arguments

  • --seed : Select seed for fixing it.

    • Default : 1
  • --gpu : Select the GPUs to be used.

    • Default : "0,1,2,3"
  • --experiment: Experiment number (Check 'libs/utils/experiment_maker.py').

    • Default : 0.1
  • --dataset : Dataset number.

    • Choices : 0 - CIFAR100, 1 - mini-imagenet
    • Default : 0
  • --imbalance : Select Imbalance factor.

    • Choices : 0: 1, 1: 100, 2: 50, 3: 10
    • Default : 1
  • --type_of_val : Choose which dataset split to use.

    • Choices: "vt": val_from_test, "vtr": val_from_train, "vit": val_is_test
    • Default : "vit"
  • --cv1 to --cv9 : Custom variable to use in experiments - purpose changes according to the experiment.

    • Default : "1"
  • --train : Run training sequence

    • Default : False
  • --generate : Run generation sequence

    • Default : False
  • --retraining : Run retraining sequence

    • Default : False
  • --resume : Will resume from the 'latest_model_checkpoint.pth' and wandb if applicable.

    • Default : False
  • --save_features : Collect feature representations.

    • Default : False
  • --save_features_phase : Dataset split of representations to collect.

    • Choices : "train", "val", "test"
    • Default : "train"
  • --config : If you have a yaml file with appropriate config, provide the path here. Will override the 'experiment_maker'.

    • Default : None

๐Ÿ‹๏ธโ€โ™‚๏ธ Trained weights

Experiment CIFAR100-LT (ResNet32, seed 1, Imb 100) mini-ImageNet-LT (ResNeXt50)
TailCalib Git-LFS Git-LFS
TailCalibX Git-LFS Git-LFS
CBD + TailCalibX Git-LFS Git-LFS

๐Ÿช€ Results on a Toy Dataset

Open In Colab

The higher the Imb ratio, the more imbalanced the dataset is. Imb ratio = maximum_sample_count / minimum_sample_count.

Check this notebook to play with the toy example from which the plot below was generated.

๐ŸŒด Directory Tree

TailCalibX
โ”œโ”€โ”€ libs
โ”‚   โ”œโ”€โ”€ core
โ”‚   โ”‚   โ”œโ”€โ”€ ce.py
โ”‚   โ”‚   โ”œโ”€โ”€ core_base.py
โ”‚   โ”‚   โ”œโ”€โ”€ ecbd.py
โ”‚   โ”‚   โ”œโ”€โ”€ modals.py
โ”‚   โ”‚   โ”œโ”€โ”€ TailCalib.py
โ”‚   โ”‚   โ””โ”€โ”€ TailCalibX.py
โ”‚   โ”œโ”€โ”€ data
โ”‚   โ”‚   โ”œโ”€โ”€ dataloader.py
โ”‚   โ”‚   โ”œโ”€โ”€ ImbalanceCIFAR.py
โ”‚   โ”‚   โ””โ”€โ”€ mini-imagenet
โ”‚   โ”‚       โ”œโ”€โ”€ 0.01_test.txt
โ”‚   โ”‚       โ”œโ”€โ”€ 0.01_train.txt
โ”‚   โ”‚       โ””โ”€โ”€ 0.01_val.txt
โ”‚   โ”œโ”€โ”€ loss
โ”‚   โ”‚   โ”œโ”€โ”€ CosineDistill.py
โ”‚   โ”‚   โ””โ”€โ”€ SoftmaxLoss.py
โ”‚   โ”œโ”€โ”€ models
โ”‚   โ”‚   โ”œโ”€โ”€ CosineDotProductClassifier.py
โ”‚   โ”‚   โ”œโ”€โ”€ DotProductClassifier.py
โ”‚   โ”‚   โ”œโ”€โ”€ ecbd_converter.py
โ”‚   โ”‚   โ”œโ”€โ”€ ResNet32Feature.py
โ”‚   โ”‚   โ”œโ”€โ”€ ResNext50Feature.py
โ”‚   โ”‚   โ””โ”€โ”€ ResNextFeature.py
โ”‚   โ”œโ”€โ”€ samplers
โ”‚   โ”‚   โ””โ”€โ”€ ClassAwareSampler.py
โ”‚   โ””โ”€โ”€ utils
โ”‚       โ”œโ”€โ”€ Default_config.yaml
โ”‚       โ”œโ”€โ”€ experiments_maker.py
โ”‚       โ”œโ”€โ”€ globals.py
โ”‚       โ”œโ”€โ”€ logger.py
โ”‚       โ””โ”€โ”€ utils.py
โ”œโ”€โ”€ LICENSE
โ”œโ”€โ”€ main.py
โ”œโ”€โ”€ Notebooks
โ”‚   โ”œโ”€โ”€ Create_mini-ImageNet-LT.ipynb
โ”‚   โ””โ”€โ”€ toy_example.ipynb
โ”œโ”€โ”€ readme_assets
โ”‚   โ”œโ”€โ”€ method.svg
โ”‚   โ””โ”€โ”€ toy_example_output.svg
โ”œโ”€โ”€ README.md
โ”œโ”€โ”€ run_all_CIFAR100-LT.sh
โ”œโ”€โ”€ run_all_mini-ImageNet-LT.sh
โ”œโ”€โ”€ run_TailCalibX_CIFAR100-LT.sh
โ””โ”€โ”€ run_TailCalibX_mini-imagenet-LT.sh

Ignored tailcalib_pip as it is for the tailcalib pip package.

๐Ÿ“ƒ Citation

@inproceedings{rahul2021tailcalibX,
    title   = {{Feature Generation for Long-tail Classification}},
    author  = {Rahul Vigneswaran and Marc T. Law and Vineeth N. Balasubramanian and Makarand Tapaswi},
    booktitle = {ICVGIP},
    year = {2021}
}

๐Ÿ‘ Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

โค About me

Rahul Vigneswaran

โœจ Extras

๐Ÿ Long-tail buzz : If you are interested in deep learning research which involves long-tailed / imbalanced dataset, take a look at Long-tail buzz to learn about the recent trending papers in this field.

๐Ÿ“ License

MIT

Owner
Rahul Vigneswaran
Rahul Vigneswaran
A tight inclusion function for continuous collision detection

Tight-Inclusion Continuous Collision Detection A conservative Continuous Collision Detection (CCD) method with support for minimum separation. You can

Continuous Collision Detection 89 Jan 01, 2023
Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

PyEmits, a python package for easy manipulation in time-series data. Time-series data is very common in real life. Engineering FSI industry (Financial

Descript 150 Dec 06, 2022
CrossNorm and SelfNorm for Generalization under Distribution Shifts (ICCV 2021)

CrossNorm (CN) and SelfNorm (SN) (Accepted at ICCV 2021) This is the official PyTorch implementation of our CNSN paper, in which we propose CrossNorm

100 Dec 28, 2022
ATAC: Adversarially Trained Actor Critic

ATAC: Adversarially Trained Actor Critic Adversarially Trained Actor Critic for Offline Reinforcement Learning by Ching-An Cheng*, Tengyang Xie*, Nan

Microsoft 41 Dec 08, 2022
Machine Learning Framework for Operating Systems - Brings ML to Linux kernel

KML: A Machine Learning Framework for Operating Systems & Storage Systems Storage systems and their OS components are designed to accommodate a wide v

File systems and Storage Lab (FSL) 186 Nov 24, 2022
A Runtime method overload decorator which should behave like a compiled language

strongtyping-pyoverload A Runtime method overload decorator which should behave like a compiled language there is a override decorator from typing whi

20 Oct 31, 2022
A Framework for Encrypted Machine Learning in TensorFlow

TF Encrypted is a framework for encrypted machine learning in TensorFlow. It looks and feels like TensorFlow, taking advantage of the ease-of-use of t

TF Encrypted 0 Jul 06, 2022
This repository contains small projects related to Neural Networks and Deep Learning in general.

ILearnDeepLearning.py Description People say that nothing develops and teaches you like getting your hands dirty. This repository contains small proje

Piotr Skalski 1.2k Dec 22, 2022
The world's simplest facial recognition api for Python and the command line

Face Recognition You can also read a translated version of this file in Chinese ็ฎ€ไฝ“ไธญๆ–‡็‰ˆ or in Korean ํ•œ๊ตญ์–ด or in Japanese ๆ—ฅๆœฌ่ชž. Recognize and manipulate fa

Adam Geitgey 46.9k Jan 03, 2023
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Dec 31, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
[CVPR 2022] "The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy" by Tianlong Chen, Zhenyu Zhang, Yu Cheng, Ahmed Awadallah, Zhangyang Wang

The Principle of Diversity: Training Stronger Vision Transformers Calls for Reducing All Levels of Redundancy Codes for this paper: [CVPR 2022] The Pr

VITA 16 Nov 26, 2022
Turn based roguelike in python

pyTB Turn based roguelike in python Documentation can be found here: http://mcgillij.github.io/pyTB/index.html Screenshot Dependencies Written in Pyth

Jason McGillivray 4 Sep 29, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation (CVPR 2021)

Anti-Adversarially Manipulated Attributions for Weakly and Semi-Supervised Semantic Segmentation Input Image Initial CAM Successive Maps with adversar

Jungbeom Lee 110 Dec 07, 2022
This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm and CNN.

Vietnamese sign lagnuage recognition using MHI and CNN This is a model to classify Vietnamese sign language using Motion history image (MHI) algorithm

Phat Pham 3 Feb 24, 2022
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
Character-Input - Create a program that asks the user to enter their name and their age

Character-Input Create a program that asks the user to enter their name and thei

PyLaboratory 0 Feb 06, 2022
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022