Baseline powergrid model for NY

Related tags

Deep LearningNYgrid
Overview

Baseline-powergrid-model-for-NY

Table of Contents
  1. About The Project
  2. Usage
  3. License
  4. Contact
  5. Acknowledgements

About The Project

As the urgency to address climate change intensifies, the integration of distributed and intermittent renewable resources in power grids will continue to accelerate. To ensure the reliability and efficacy of the transformed system, researchers and other stakeholders require a validated representation of the essential characteristics of the power grid that is accurate for a specific region under study. For example, the Climate Leadership and Community Protection Act (CLCPA) in New York sets ambitious targets for transformation of the energy system, opening many interesting research and analysis questions. To provide a platform for these analyses, this paper presents an overview of the current NYS power grid and develops an open-source1 baseline model using only publicly available data. The proposed model is validated with real data for power flow and Locational Marginal Prices (LMPs) to demonstrate the feasibility, functionality and consistency of the model with hourly data of 2019 as an example. The model is easily adjustable and customizable for various analyses of future configurations and scenarios that require spatial-temporal information of the NYS power grid with data access to all the available historical data, and serves as a practical system for general methods and algorithms testing.

Built With

The code is written with Matlab and depends on the installation of Matpower. Please go to the following websties and follow the instructions to install Matlab and Matpower.

Usage

  1. git clone https://github.com/AndersonEnergyLab-Cornell/NYgrid
  2. Add the full folder and the subfolders to your Matlab Path
  3. Modify the main.m file to run a specific case

Main.m

Specify a year, and download and format the data in that year. Downlaoded data are stored in the "Prep" directory. Formatted data are stored in the "Data" directory. For example, to run for Jan 1st 2019 1:00 am, modify the test year, month, day and hour.

  testyear = 2019;
  testmonth = 1;
  testday = 1;
  testhour = 1;

Data sources include:

  1. NYISO:
    • hourly fuel mix
    • hourly interface flow
    • hourly real time price
  2. RGGI:
    • hourly generation for thermal generators larger than 25 MW
  3. NRC:
    • Daily nuclear capacity factor
  4. EIA:
    • Monthly hydro generation data for Niagara and St. Lawrence

The main function first update the operation condition for load and generators from the historical data and store the modified mpc struct in mpcreduced Then it automatically calls the Optimal Power Flow and Power Flow test and store the result in resultOPF and resultPF, respectively.

License

Distributed under the MIT License. See LICENSE for more information.

Contact

Vivienne Liu - [email protected]

Project Link: https://github.com/AndersonEnergyLab-Cornell/NYgrid

Acknowledgements

Owner
Anderson Energy Lab at Cornell
Cornell Research lab on sustainable energy, led by Prof. Lindsay Anderson
Anderson Energy Lab at Cornell
Meta Self-learning for Multi-Source Domain Adaptation: A Benchmark

Meta Self-Learning for Multi-Source Domain Adaptation: A Benchmark Project | Arxiv | YouTube | | Abstract In recent years, deep learning-based methods

CVSM Group - email: <a href=[email protected]"> 188 Dec 12, 2022
A PyTorch Lightning solution to training OpenAI's CLIP from scratch.

train-CLIP 📎 A PyTorch Lightning solution to training CLIP from scratch. Goal ⚽ Our aim is to create an easy to use Lightning implementation of OpenA

Cade Gordon 396 Dec 30, 2022
LBK 35 Dec 26, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Keras Model Implementation Walkthrough

Keras Model Implementation Walkthrough

Luke Wood 17 Sep 27, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Projects of Andfun Yangon

AndFunYangon Projects of Andfun Yangon First Commit We can use gsearch.py to sea

Htin Aung Lu 1 Dec 28, 2021
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023
[NeurIPS 2021] Galerkin Transformer: a linear attention without softmax

[NeurIPS 2021] Galerkin Transformer: linear attention without softmax Summary A non-numerical analyst oriented explanation on Toward Data Science abou

Shuhao Cao 159 Dec 20, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
Automatic differentiation with weighted finite-state transducers.

GTN: Automatic Differentiation with WFSTs Quickstart | Installation | Documentation What is GTN? GTN is a framework for automatic differentiation with

100 Dec 29, 2022
Genetic feature selection module for scikit-learn

sklearn-genetic Genetic feature selection module for scikit-learn Genetic algorithms mimic the process of natural selection to search for optimal valu

Manuel Calzolari 260 Dec 14, 2022
OCR-D wrapper for detectron2 based segmentation models

ocrd_detectron2 OCR-D wrapper for detectron2 based segmentation models Introduction Installation Usage OCR-D processor interface ocrd-detectron2-segm

Robert Sachunsky 13 Dec 06, 2022
Over-the-Air Ensemble Inference with Model Privacy

Over-the-Air Ensemble Inference with Model Privacy This repository contains simulations for our private ensemble inference method. Installation Instal

Selim Firat Yilmaz 1 Jun 29, 2022
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
[ICLR 2021] "CPT: Efficient Deep Neural Network Training via Cyclic Precision" by Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin

CPT: Efficient Deep Neural Network Training via Cyclic Precision Yonggan Fu, Han Guo, Meng Li, Xin Yang, Yining Ding, Vikas Chandra, Yingyan Lin Accep

26 Oct 25, 2022
LowRankModels.jl is a julia package for modeling and fitting generalized low rank models.

LowRankModels.jl LowRankModels.jl is a Julia package for modeling and fitting generalized low rank models (GLRMs). GLRMs model a data array by a low r

Madeleine Udell 183 Dec 17, 2022
Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

2 Jan 11, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
Implementation of Wasserstein adversarial attacks.

Stronger and Faster Wasserstein Adversarial Attacks Code for Stronger and Faster Wasserstein Adversarial Attacks, appeared in ICML 2020. This reposito

21 Oct 06, 2022