Supplementary code for SIGGRAPH 2021 paper: Discovering Diverse Athletic Jumping Strategies

Related tags

Deep LearningJump
Overview

SIGGRAPH 2021: Discovering Diverse Athletic Jumping Strategies

project page

paper

demo video

image_0032

Prerequisites

Important Notes

We suspect there are bugs in linux gcc > 9.2 or kernel > 5.3 or our code somehow is not compatible with that. Our code has large numerical errors from unknown source given the new C++ compiler. Please use older versions of C++ compiler or test the project on Windows.

C++ Setup

This project has C++ components. There is a cmake project inside Kinematic folder. We have setup the CMake project so that it can be built on both linux and Windows. Use cmake, cmake-gui or visual studio to build the project. It requires eigen library.

Python Setup

Install the Python requirements listed in requirements.txt. The version shouldn't matter. You should be safe to install the latest versions of these packages.

Rendering Setup

To visualize training results, please set up our simulation renderer.

  • Clone and follow build instructions in UnityKinematics. This is a flexible networking utility that will send raw simulation geometry data to Unity for rendering purpose.
  • Copy [UnityKinematics build folder]/pyUnityRenderer to this root project folder.
  • Here's a sample Unity project called SimRenderer in which you can render the scenes for this project. Clone SimRenderer outside this project folder.
  • After building UnityKinematics, copy [UnityKinematics build folder]/Assets/Scripts/API to SimRenderer/Assets/Scripts. Start Unity, load SimRenderer project and it's ready to use.

Training P-VAE

We have included a pre-trained model in results/vae/models/13dim.pth. If you would like to retrain the model, run the following:

python train_pose_vae.py

This will generate the new model in results/vae/test**/test.pth. Copy the .pth file and the associated .pth.norm.npy file into results/vae/models. Change presets/default/vae/vae.yaml under the model key to use your new model.

Train Run-ups

python train.py runup

Modify presets/custom/runup.yaml to change parts of the target take-off features. Refer to Appendix A in the paper to see reference parameters.

After training, run

python once.py runup no_render results/runup***/checkpoint_2000.tar

to generate take-off state file in npy format used to train take-off controller.

Train Jumpers

Open presets/custom/jump.yaml, change env.highjump.initial_state to the path to the generated take-off state file, like results/runup***/checkpoint_2000.tar.npy. Then change env.highjump.wall_rotation to specify the wall orientation (in degrees). Refer to Appendix A in the paper to see reference parameters (note that we use radians in the paper). Run

python train.py jump

to start training.

Start the provided SimRenderer (in Unity), enter play mode, the run

python evaluate.py jump results/jump***/checkpoint_***.tar

to evaluate the visualize the motion at any time. Note that env.highjump.initial_wall_height must be set to the training height at the time of this checkpoint for correct evaluation. Training height information is available through training logs, available both in the console and through tensorboard logs. You can start tensorboard through

python -m tensorboard.main --bind_all --port xx --logdir results/jump***/
Some code of the implements of Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network

3D-GMPDCNN Geological Modeling Using 3D Pixel-Adaptive and Deformable Convolutional Neural Network PyTorch implementation of "Geological Modeling Usin

5 Nov 21, 2022
Unofficial implementation of Google's FNet: Mixing Tokens with Fourier Transforms

FNet: Mixing Tokens with Fourier Transforms Pytorch implementation of Fnet : Mixing Tokens with Fourier Transforms. Citation: @misc{leethorp2021fnet,

Rishikesh (ऋषिकेश) 218 Jan 05, 2023
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
Tensorflow Implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (ICML 2017 workshop)

tf-SNDCGAN Tensorflow implementation of the paper "Spectral Normalization for Generative Adversarial Networks" (https://www.researchgate.net/publicati

Nhat M. Nguyen 248 Nov 25, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Code for STFT Transformer used in BirdCLEF 2021 competition.

STFT_Transformer Code for STFT Transformer used in BirdCLEF 2021 competition. The STFT Transformer is a new way to use Transformers similar to Vision

Jean-François Puget 69 Sep 29, 2022
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
Open-source Monocular Python HawkEye for Tennis

Tennis Tracking 🎾 Objectives Track the ball Detect court lines Detect the players To track the ball we used TrackNet - deep learning network for trac

ArtLabs 188 Jan 08, 2023
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

MAVE: : A Product Dataset for Multi-source Attribute Value Extraction The dataset contains 3 million attribute-value annotations across 1257 unique ca

Google Research Datasets 89 Jan 08, 2023
Some methods for comparing network representations in deep learning and neuroscience.

Generalized Shape Metrics on Neural Representations In neuroscience and in deep learning, quantifying the (dis)similarity of neural representations ac

Alex Williams 45 Dec 27, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
FwordCTF 2021 Infrastructure and Source code of Web/Bash challenges

FwordCTF 2021 You can find here the source code of the challenges I wrote (Web and Bash) in FwordCTF 2021 and the source code of the platform with our

Kahla 5 Nov 25, 2022
用opencv的dnn模块做yolov5目标检测,包含C++和Python两个版本的程序

yolov5-dnn-cpp-py yolov5s,yolov5l,yolov5m,yolov5x的onnx文件在百度云盘下载, 链接:https://pan.baidu.com/s/1d67LUlOoPFQy0MV39gpJiw 提取码:bayj python版本的主程序是main_yolov5.

365 Jan 04, 2023
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral)

DSA^2 F: Deep RGB-D Saliency Detection with Depth-Sensitive Attention and Automatic Multi-Modal Fusion (CVPR'2021, Oral) This repo is the official imp

如今我已剑指天涯 46 Dec 21, 2022