[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Overview

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral)

2022-03-29: The paper was selected as a CVPR 2022 Oral paper!

2022-03-03: The paper was accepted by CVPR 2022!

This is the official PyTorch implementation of the ContrastiveCrop paper:

@article{peng2022crafting,
  title={Crafting Better Contrastive Views for Siamese Representation Learning},
  author={Peng, Xiangyu and Wang, Kai and Zhu, Zheng and You, Yang},
  journal={arXiv preprint arXiv:2202.03278},
  year={2022}
}

This repo includes PyTorch implementation of SimCLR, MoCo, BYOL and SimSiam, as well as their DDP training code.

Preparation

  1. Create a python enviroment with pytorch >= 1.8.1.
  2. pip install -r requirements.txt
  3. Modify dataset root in the config file.

Pre-train

# MoCo, CIFAR-10, CCrop
python DDP_moco_ccrop.py configs/small/cifar10/moco_ccrop.py

# SimSiam, CIFAR-100, CCrop
python DDP_simsiam_ccrop.py configs/small/cifar100/simsiam_ccrop.py

# MoCo V2, IN-200, CCrop
python DDP_moco_ccrop.py configs/IN200/mocov2_ccrop.py

# MoCo V2, IN-1K, CCrop
python DDP_moco_ccrop.py configs/IN1K/mocov2_ccrop.py

We also recommend trying an even simpler version of ContrastiveCrop, named SimCCrop, that simply fixes a box at the center of the image with half height & width of that image. SimCCrop even does not require localization and thus adds NO extra training overhead. It should work well on almost 'object-centric' datasets.

# MoCo, SimCCrop
python DDP_moco_ccrop.py configs/small/cifar10/moco_simccrop.py
python DDP_moco_ccrop.py configs/small/cifar100/moco_simccrop.py

Linear Evaluation

# CIFAR-10
python DDP_linear.py configs/linear/cifar10_res18.py --load ./checkpoints/small/cifar10/moco_ccrop/last.pth

# CIFAR-100
python DDP_linear.py configs/linear/cifar100_res18.py --load ./checkpoints/small/cifar100/simsiam_ccrop/last.pth

# IN-200 
python DDP_linear.py configs/linear/IN200_res50.py --load ./checkpoints/IN200/mocov2_ccrop/last.pth

# IN-1K
python DDP_linear.py configs/linear/IN1K_res50.py --load ./checkpoints/IN1K/mocov2_ccrop/last.pth

More models and datasets coming soon.

Owner
CS PhD, HPC-AI Lab, National University of Singapore
Code for "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" @ICRA2021

CloudAAE This is an tensorflow implementation of "CloudAAE: Learning 6D Object Pose Regression with On-line Data Synthesis on Point Clouds" Files log:

Gee 35 Nov 14, 2022
LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection

LiDAR Distillation Paper | Model LiDAR Distillation: Bridging the Beam-Induced Domain Gap for 3D Object Detection Yi Wei, Zibu Wei, Yongming Rao, Jiax

Yi Wei 75 Dec 22, 2022
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project

Semantic Code Search Semantic code search implementation using Tensorflow framework and the source code data from the CodeSearchNet project. The model

Chen Wu 24 Nov 29, 2022
Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations

Information-Theoretic Multi-Objective Bayesian Optimization with Continuous Approximations Requirements The code is implemented in Python and requires

1 Nov 03, 2021
VIL-100: A New Dataset and A Baseline Model for Video Instance Lane Detection (ICCV 2021)

Preparation Please see dataset/README.md to get more details about our datasets-VIL100 Please see INSTALL.md to install environment and evaluation too

82 Dec 15, 2022
Awesome Weak-Shot Learning

Awesome Weak-Shot Learning In weak-shot learning, all categories are split into non-overlapped base categories and novel categories, in which base cat

BCMI 162 Dec 30, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
[MedIA2021]MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning

MIDeepSeg: Minimally Interactive Segmentation of Unseen Objects from Medical Images Using Deep Learning [MedIA or Arxiv] and [Demo] This repository pr

Healthcare Intelligence Laboratory 92 Dec 08, 2022
CNNs for Sentence Classification in PyTorch

Introduction This is the implementation of Kim's Convolutional Neural Networks for Sentence Classification paper in PyTorch. Kim's implementation of t

Shawn Ng 956 Dec 19, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Groceries ARL: Association Rules (Birliktelik Kuralı)

Groceries_ARL Association Rules (Birliktelik Kuralı) Birliktelik kuralları, mark

Şebnem 5 Feb 08, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022