๐Ÿ† The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

Overview

AI City 2021: Connecting Language and Vision for Natural Language-Based Vehicle Retrieval

๐Ÿ† The 1st Place Submission to AICity Challenge 2021 Natural Language-Based Vehicle Retrieval Track (Alibaba-UTS submission)

framework

We have two codebases. For the final submission, we conduct the feature ensemble, where features are from two codebases.

Part One is at here: https://github.com/ShuaiBai623/AIC2021-T5-CLV

Part Two is at here: https://github.com/layumi/NLP-AICity2021

Prepare

  • Preprocess the dataset to prepare frames, motion maps, NLP augmentation

scripts/extract_vdo_frms.py is a Python script that is used to extract frames.

scripts/get_motion_maps.py is a Python script that is used to get motion maps.

scripts/deal_nlpaug.py is a Python script that is used for NLP augmentation.

  • Download the pretrained models of Part One to checkpoints. The checkpoints can be found here. The best score of a single model on TestA is 0.1927 from motion_effb3_NOCLS_nlpaug_320.pth.

The directory structures in data and checkpoints are as follows๏ผš

.
โ”œโ”€โ”€ checkpoints
โ”‚   โ”œโ”€โ”€ motion_effb2_1CLS_nlpaug_288.pth
โ”‚   โ”œโ”€โ”€ motion_effb3_NOCLS_nlpaug_320.pth
โ”‚   โ”œโ”€โ”€ motion_SE_3CLS_nonlpaug_288.pth
โ”‚   โ”œโ”€โ”€ motion_SE_NOCLS_nlpaug_288.pth
โ”‚   โ””โ”€โ”€ motion_SE_NOCLS_nonlpaug_288.pth
โ””โ”€โ”€ data
    โ”œโ”€โ”€ AIC21_Track5_NL_Retrieval
    โ”‚   โ”œโ”€โ”€ train
    โ”‚   โ””โ”€โ”€ validation
    โ”œโ”€โ”€ motion_map 
    โ”œโ”€โ”€ test-queries.json
    โ”œโ”€โ”€ test-queries_nlpaug.json    ## NLP augmentation (Refer to scripts/deal_nlpaug.py)
    โ”œโ”€โ”€ test-tracks.json
    โ”œโ”€โ”€ train.json
    โ”œโ”€โ”€ train_nlpaug.json
    โ”œโ”€โ”€ train-tracks.json
    โ”œโ”€โ”€ train-tracks_nlpaug.json    ## NLP augmentation (Refer to scripts/deal_nlpaug.py)
    โ”œโ”€โ”€ val.json
    โ””โ”€โ”€ val_nlpaug.json             ## NLP augmentation (Refer to scripts/deal_nlpaug.py)

Part One

  • Modify the data paths in config.py

Train

The configuration files are in configs.

CUDA_VISIBLE_DEVICES=0,1,2,3 python -u main.py --name your_experiment_name --config your_config_file |tee log

Test

Change the RESTORE_FROM in your configuration file.

python -u test.py --config your_config_file

Extract the visual and text embeddings. The extracted embeddings can be found here.

python -u test.py --config configs/motion_effb2_1CLS_nlpaug_288.yaml
python -u test.py --config configs/motion_SE_NOCLS_nlpaug_288.yaml
python -u test.py --config configs/motion_effb2_1CLS_nlpaug_288.yaml
python -u test.py --config configs/motion_SE_3CLS_nonlpaug_288.yaml
python -u test.py --config configs/motion_SE_NOCLS_nonlpaug_288.yaml

Part Two

Link

Submission

During the inference, we average all the frame features of the target in each track as track features, the embeddings of text descriptions are also averaged as the query features. The cosine distance is used for ranking as the final result.

  • Reproduce the best submission. ALL extracted embeddings are in the folder output:
python scripts/get_submit.py

Friend Links๏ผš

VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Domain Generalization with MixStyle, ICLR'21.

MixStyle This repo contains the code of our ICLR'21 paper, "Domain Generalization with MixStyle". The OpenReview link is https://openreview.net/forum?

Kaiyang 208 Dec 28, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

ไฝ•ๆฃฎ 50 Sep 20, 2022
Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters"

Manga Character Screentone Synthesis Official PyTorch implementation of "Synthesis of Screentone Patterns of Manga Characters" presented in IEEE ISM 2

Tsubota 2 Nov 20, 2021
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
TensorFlow implementation of the paper "Hierarchical Attention Networks for Document Classification"

Hierarchical Attention Networks for Document Classification This is an implementation of the paper Hierarchical Attention Networks for Document Classi

Quoc-Tuan Truong 83 Dec 05, 2022
Implementation of CaiT models in TensorFlow and ImageNet-1k checkpoints. Includes code for inference and fine-tuning.

CaiT-TF (Going deeper with Image Transformers) This repository provides TensorFlow / Keras implementations of different CaiT [1] variants from Touvron

Sayak Paul 9 Jun 26, 2022
Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech

EdiTTS: Score-based Editing for Controllable Text-to-Speech Official implementation of EdiTTS: Score-based Editing for Controllable Text-to-Speech. Au

Neosapience 98 Dec 25, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhรคuser 6 Dec 08, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Very deep VAEs in JAX/Flax

Very Deep VAEs in JAX/Flax Implementation of the experiments in the paper Very Deep VAEs Generalize Autoregressive Models and Can Outperform Them on I

Jamie Townsend 42 Dec 12, 2022
Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations

Seeing All the Angles: Learning Multiview Manipulation Policies for Contact-Rich Tasks from Demonstrations Trevor Ablett, Daniel (Yifan) Zhai, Jonatha

STARS Laboratory 3 Feb 01, 2022
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling ฤorฤ‘e Miladinoviฤ‡ โ€ƒ Aleksandar Staniฤ‡ โ€ƒ Stefan Bauer โ€ƒ Jรผrgen Schmid

Djordje Miladinovic 34 Jan 19, 2022
Auxiliary Raw Net (ARawNet) is a ASVSpoof detection model taking both raw waveform and handcrafted features as inputs, to balance the trade-off between performance and model complexity.

Overview This repository is an implementation of the Auxiliary Raw Net (ARawNet), which is ASVSpoof detection system taking both raw waveform and hand

6 Jul 08, 2022
PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021.

PAML PyTorch implementation of the paper: "Preference-Adaptive Meta-Learning for Cold-Start Recommendation", IJCAI, 2021. (Continuously updating ) Int

15 Nov 18, 2022