The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

Overview

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]

Release Notes

The offical PyTorch implementation of NeMo, published on ICLR 2021. NeMo achieves robust 3D pose estimation method by performing render-and-compare on the level of neural network features. Example figure The figure shows a dynamic example of the pose optimization process of NeMo. Top-left: the input image; Top-right: A mesh superimposed on the input image in the predicted 3D pose. Bottom-left: The occluder location as predicted by NeMo, where yellow is background, green is the non-occluded area and red is the occluded area of the object. Bottom-right: The loss landscape as a function of each camera parameter respectively. The colored vertical lines demonstrate the current prediction and the ground-truth parameter is at center of x-axis.

Installation

The code is tested with python 3.7, PyTorch 1.5 and PyTorch3D 0.2.0.

Clone the project and install requirements

git clone https://github.com/Angtian/NeMo.git
cd NeMo
pip install -r requirements.txt

Running NeMo

We provide the scripts to train NeMo and to perform inference with NeMo on Pascal3D+ and the Occluded Pascal3D+ datasets. For more details about the OccludedPascal3D+ please refer to this Github repo: OccludedPASCAL3D.

Step 1: Prepare Datasets
Set ENABLE_OCCLUDED to "true" if you need evaluate NeMo under partial occlusions. You can change the path to the datasets in the file PrepareData.sh, after downloading the data. Otherwise this script will automatically download datasets.
Then run the following commands:

chmod +x PrepareData.sh
./PrepareData.sh

Step 2: Training NeMo
Modify the settings in TrainNeMo.sh.
GPUS: set avaliable GPUs for training depending on your machine. The standard setting uses 7 gpus (6 for the backbone, 1 for the feature bank). If you have only 4 GPUs available, we suggest to turn off the "--sperate_bank" in training stage.
MESH_DIMENSIONS: "single" or "multi".
TOTAL_EPOCHS: The default setting is 800 epochs, which takes 3 to 4 days to train on an 8 GPUs machine. However, 400 training epochs could already yield good accuracy. The final performance for the raw Pascal3D+ over train epochs (SingleCuboid):

Training Epochs 200 400 600 800
Acc Pi / 6 82.4 84.4 84.8 85.5
Acc Pi / 18 57.1 59.2 59.6 60.2

Then, run these commands:

chmod +x TrainNeMo.sh
./TrainNeMo.sh

Step 2 (Alternative): Download Pretrained Model
Here we provide the pretrained NeMo Model and backbone for the "SingleCuboid" setting. Run the following commands to download the pretrained model:

wget --load-cookies /tmp/cookies.txt "https://docs.google.com/uc?export=download&confirm=$(wget --quiet --save-cookies /tmp/cookies.txt --keep-session-cookies --no-check-certificate 'https://docs.google.com/uc?export=download&id=1X1NCx22TFGJs108TqDgaPqrrKlExZGP-' -O- | sed -rn 's/.*confirm=([0-9A-Za-z_]+).*/\1\n/p')&id=1X1NCx22TFGJs108TqDgaPqrrKlExZGP-" -O NeMo_Single_799.zip
unzip NeMo_Single_799.zip

Step 3: Inference with NeMo
The inference stage includes feature extraction and pose optimization. The pose optimization conducts render-and-compare on the neural features w.r.t. the camera pose iteratively. This takes some time to run on the full dataset (3-4 hours for each occlusion level on a 8 GPU machine).
To run the inference, you need to first change the settings in InferenceNeMo.sh:
MESH_DIMENSIONS: Set to be same as the training stage.
GPUS: Our implemention could either utilize 4 or 8 GPUs for the pose optimization. We will automatically distribute workloads over available GPUs and run the optimization in parallel.
LOAD_FILE_NAME: Change this setting if you do not train 800 epochs, e.g. train NeMo for 400 -> "saved_model_%s_399.pth".

Then, run these commands to conduct NeMo inference on unoccluded Pascal3D+:

chmod +x InferenceNeMo.sh
./InferenceNeMo.sh

To conduct inference on the occluded-Pascal3D+ (Note you need enable to create OccludedPascal3D+ dataset during data preparation):

./InferenceNeMo.sh FGL1_BGL1
./InferenceNeMo.sh FGL2_BGL2
./InferenceNeMo.sh FGL3_BGL3

Citation

Please cite the following paper if you find this the code useful for your research/projects.

@inproceedings{wang2020NeMo,
title = {NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation},
author = {Angtian, Wang and Kortylewski, Adam and Yuille, Alan},
booktitle = {Proceedings International Conference on Learning Representations (ICLR)},
year = {2021},
}
Owner
Angtian Wang
PhD student at Johns Hopkins University, my main focus includes Computer Vision and Deep Learning.
Angtian Wang
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items

A Novel Incremental Learning Driven Instance Segmentation Framework to Recognize Highly Cluttered Instances of the Contraband Items This repository co

Taimur Hassan 3 Mar 16, 2022
A new codebase for Group Activity Recognition. It contains codes for ICCV 2021 paper: Spatio-Temporal Dynamic Inference Network for Group Activity Recognition and some other methods.

Spatio-Temporal Dynamic Inference Network for Group Activity Recognition The source codes for ICCV2021 Paper: Spatio-Temporal Dynamic Inference Networ

40 Dec 12, 2022
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation Created by Charles R. Qi, Hao Su, Kaichun Mo, Leonidas J. Guibas from Sta

Charles R. Qi 4k Dec 30, 2022
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial.

Streamlit Demo: Deep Dream A Streamlit demo demonstrating the Deep Dream technique. Adapted from the TensorFlow Deep Dream tutorial How to run this de

Streamlit 11 Dec 12, 2022
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Real time Human Detection Counting

In this python project, we are going to build the Human Detection and Counting System through Webcam or you can give your own video or images. This is a deep learning project on computer vision, whic

Mir Nawaz Ahmad 2 Jun 17, 2022
Source code release of the paper: Knowledge-Guided Deep Fractal Neural Networks for Human Pose Estimation.

GNet-pose Project Page: http://guanghan.info/projects/guided-fractal/ UPDATE 9/27/2018: Prototxts and model that achieved 93.9Pck on LSP dataset. http

Guanghan Ning 83 Nov 21, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
SciKit-Learn Laboratory (SKLL) makes it easy to run machine learning experiments.

SciKit-Learn Laboratory This Python package provides command-line utilities to make it easier to run machine learning experiments with scikit-learn. O

ETS 528 Nov 25, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Official PyTorch implementation of GDWCT (CVPR 2019, oral)

This repository provides the official code of GDWCT, and it is written in PyTorch. Paper Image-to-Image Translation via Group-wise Deep Whitening-and-

WonwoongCho 135 Dec 02, 2022
Segmentation-Aware Convolutional Networks Using Local Attention Masks

Segmentation-Aware Convolutional Networks Using Local Attention Masks [Project Page] [Paper] Segmentation-aware convolution filters are invariant to b

144 Jun 29, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022