A tight inclusion function for continuous collision detection

Overview

Tight-Inclusion Continuous Collision Detection

Build

A conservative Continuous Collision Detection (CCD) method with support for minimum separation.

You can read more about this work in our ACM Transactions on Graphics paper:

"A Large Scale Benchmark and an Inclusion-Based Algorithm forContinuous Collision Detection"

@article{Wang:2021:Benchmark,
    title   = {A Large Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision Detection},
    author  = {Bolun Wang and Zachary Ferguson and Teseo Schneider and Xin Jiang and Marco Attene and Daniele Panozzo},
    year    = 2021,
    journal = {ACM Transactions on Graphics}
}

Compiling Instruction

To compile the code, first make sure CMake is installed.

To build the library on Linux or macOS:

mkdir build
cd build
cmake ../ -DCMAKE_BUILD_TYPE=Release
make

Then you can run a CCD example:

./Tight_Inclusion_bin 

We also provide you an example to run the Sample Queries using our CCD method. You may need to install gmp before compiling the code. Then set the CMake option TIGHT_INCLUSION_WITH_TESTS as ON when compiling:

cmake ../ -DCMAKE_BUILD_TYPE=Release -DTIGHT_INCLUSION_WITH_TESTS=ON
make

Then you can run ./Tight_Inclusion_bin to test the handcrafted queries in the Sample Queries.

Usage

Include #include <tight_inclusion/inclusion_ccd.hpp>

To check edge-edge ccd, use bool inclusion_ccd::edgeEdgeCCD_double();

To check vertex-face ccd, use bool inclusion_ccd::vertexFaceCCD_double();

💡 If collision is detected, the ccd function will return true, otherwise, the ccd function will return false. Since our method is CONSERVATIVE, if the returned result is false, we guarantee that there is no collision happens. If the result is true, it is possible that there is no collision but we falsely report a collision, but we can guarantee that this happens only if the minimal distance between the two primitives in this time step is no larger than tolerance + ms + err. We wil explain these parameters below.

For both edge-edge ccd and vertex-face ccd, the input CCD query is presented by 8 vertices which are in the format of Eigen::Vector3d. Please read our code in tight_inclusion/inclusion_ccd.hpp for the correct input order of the vertices.

Beside the input vertices, there are some input and output parameters for users to tune the performace or to get more CCD information. Here is a list of the explanations of the parameters:

input:
    err                 The numerical filters of the x, y and z coordinates. It measures the errors introduced by floating-point calculation when solving inclusion functions.
    ms                  Minimum separation distance no less than 0. It guarantees that collision will be reported if the distance between the two primitives is less than ms.
    tolerance           User-specific solving precision. It is the target maximal x, y, and z length of the inclusion function. We suggest the user to set it as 1e-6.
    t_max               The time range [0, t_max] where we detect collisions. Since the input query implies the motion in time range [0, 1], t_max should no larger than 1.
    max_itr             The parameter to enable early termination of the algorithm. If you set max_itr < 0, early termination will be disabled, but this may cause longer runtime. We suggest to set max_itr = 1e6.
    CCD_TYPE            The parameter to choose collision detection algorithms. By default CCD_TYPE = 1. If set CCD_TYPE = 0, the code will switch to a naive conservative CCD algorithm, but lack of our advanced features. 
    
output:
    toi                 Time of impact. If multiple collisions happen in this time step, it will return the earlist collision time. If there is no collision, the returned toi value will be std::numeric_limits<double>::infinity().
    output_tolerance    The real solving precision. If early termination is enabled, the solving precision may not reach the target precision. This parameter will return the real solving precision when the code is terminated.

Tips

💡 The input parameter err is crucial to guarantee our algorithm to be a conservative method not affected by floating point rounding errors. To run a single query, you can set err = {{-1, -1, -1}} to enable a sub-function to calculate the real numerical filters when solving CCD. If you are integrating our CCD in simulators, you need to:

  • Include the headler: #include <tight_inclusion/interval_root_finder.hpp>.
  • Call std::array<double, 3> err_vf = inclusion_ccd::get_numerical_error() and std::array<double, 3> err_ee = inclusion_ccd::get_numerical_error()
  • Use the parameter err_ee each time you call bool inclusion_ccd::edgeEdgeCCD_double() and err_vf when you call bool inclusion_ccd::vertexFaceCCD_double().

The parameters for function inclusion_ccd::get_numerical_error() is explained below:

input:
    vertices            Vertices of the Axies-Aligned-Bounding-Box of the simulation scene. Before you run the simulation, you need to conservatively estimate the Axies-Aligned-Bounding-Box in which the meshes will located during the whole simulation process, and the vertices should be the corners of the AABB.
    check_vf            A boolean instruction showing if you are checking vertex-face or edge-edge CCD.
    using_minimum_separation    A boolean instruction. If you are using minimum-separation CCD (the input parameter ms > 0), please set it as true.

💡 For some simulators which use non-zero minimum separation distance (ms > 0) to make sure intersection-free for each time-step, we have a CMake option TIGHT_INCLUSION_WITH_NO_ZERO_TOI to avoid the returned collision time toi is 0. You need to set TIGHT_INCLUSION_WITH_NO_ZERO_TOI as ON when compiling by: cmake ../ -DCMAKE_BUILD_TYPE=Release -DTIGHT_INCLUSION_WITH_NO_ZERO_TOI=ON. Then when you use the CCD functions, the code will continue the refinement in higher precision if the output toi is 0 under the given tolerance. So, the eventually toi will not be 0.

To have a better understand, or to get more details of our Tight-Inclusion CCD algorithm, please refer to our paper.

You might also like...
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

On the model-based stochastic value gradient for continuous reinforcement learning

On the model-based stochastic value gradient for continuous reinforcement learning This repository is by Brandon Amos, Samuel Stanton, Denis Yarats, a

Continuous Diffusion Graph Neural Network

We present Graph Neural Diffusion (GRAND) that approaches deep learning on graphs as a continuous diffusion process and treats Graph Neural Networks (GNNs) as discretisations of an underlying PDE.

PyTorch implementation for  MINE: Continuous-Depth MPI with Neural Radiance Fields
PyTorch implementation for MINE: Continuous-Depth MPI with Neural Radiance Fields

MINE: Continuous-Depth MPI with Neural Radiance Fields Project Page | Video PyTorch implementation for our ICCV 2021 paper. MINE: Towards Continuous D

This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper
This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Deep Continuous Clustering Introduction This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper): Sohil Atul Sh

This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution
This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivariant Continuous Convolution

Trajectory Prediction using Equivariant Continuous Convolution (ECCO) This is the codebase for the ICLR 2021 paper Trajectory Prediction using Equivar

PyTorch implementation for Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuous Sign Language Recognition.

Stochastic CSLR This is the PyTorch implementation for the ECCV 2020 paper: Stochastic Fine-grained Labeling of Multi-state Sign Glosses for Continuou

Code for the ICASSP-2021 paper: Continuous Speech Separation with Conformer.

Continuous Speech Separation with Conformer Introduction We examine the use of the Conformer architecture for continuous speech separation. Conformer

A clean and robust Pytorch implementation of PPO on continuous action space.
A clean and robust Pytorch implementation of PPO on continuous action space.

PPO-Continuous-Pytorch I found the current implementation of PPO on continuous action space is whether somewhat complicated or not stable. And this is

Comments
  • Improved No Zero ToI

    Improved No Zero ToI

    • I changed the options for avoiding a zero time of impact by making the option a parameter to the CCD functions.
    • I also changed from a recursive algorithm to an iterative one with a maximum number of iterations.
    opened by zfergus 2
  • a case returned 0 TOI

    a case returned 0 TOI

    For the PT CCD case below, TICCD returned 0 TOI.

    3.5000000000e-01 0.0000000000e+00 3.5000000000e-01
    3.4604643638e-01 2.7847887896e-03 3.4658121160e-01
    3.5000819263e-01 -1.5763377304e-06 3.5001214242e-01
    3.4903882032e-01 -1.5866575093e-03 3.4560164356e-01
    0.0000000000e+00 0.0000000000e+00 0.0000000000e+00
    1.0120300789e-07 -1.4009994248e-04 -8.5653091896e-05
    -9.2976239634e-07 1.4361165221e-06 5.5168830145e-07
    1.1649271683e-04 -3.6172565398e-05 -4.7128237917e-05
    

    The format is

    node_x node_y node_z
    traingle_node0_x traingle_node0_y traingle_node0_z
    traingle_node1_x traingle_node1_y traingle_node1_z
    traingle_node2_x traingle_node2_y traingle_node2_z
    node_displacement_x node_displacement_y node_displacement_z
    traingle_node0_displacement_x traingle_node0_displacement_y traingle_node0_displacement_z
    traingle_node1_displacement_x traingle_node1_displacement_y traingle_node1_displacement_z
    traingle_node2_displacement_x traingle_node2_displacement_y traingle_node2_displacement_z
    

    I used the TICCD from the CCDWrapper repo (latest commit), and I called it like

    template <class T>
    bool Point_Triangle_CCD_TI(
        const Eigen::Matrix<T, 3, 1>& p, 
        const Eigen::Matrix<T, 3, 1>& t0, 
        const Eigen::Matrix<T, 3, 1>& t1,
        const Eigen::Matrix<T, 3, 1>& t2,
        const Eigen::Matrix<T, 3, 1>& dp, 
        const Eigen::Matrix<T, 3, 1>& dt0, 
        const Eigen::Matrix<T, 3, 1>& dt1,
        const Eigen::Matrix<T, 3, 1>& dt2,
        T eta, T thickness, T& toc)
    {
        T toc_prev = toc;
        T output_tolerance;
    
        T dist2_cur;
        Point_Triangle_Distance_Unclassified(p, t0, t1, t2, dist2_cur);
        T dist_cur = std::sqrt(dist2_cur);
        if (inclusion_ccd::vertexFaceCCD_double(p, t0, t1, t2,
            p + dp, t0 + dt0, t1 + dt1, t2 + dt2, { { -1, 0, 0 } },
            eta * (dist2_cur - thickness * thickness) / (dist_cur + thickness) + thickness,
            toc, 1e-6, toc_prev, 1e6, output_tolerance, 1))
        {
            if (toc < 1.0e-6) {
                std::cout << "PT CCD tiny!" << std::endl;
                if (inclusion_ccd::vertexFaceCCD_double(p, t0, t1, t2,
                    p + dp, t0 + dt0, t1 + dt1, t2 + dt2, { { -1, 0, 0 } },
                    thickness, toc, 1e-6, toc_prev, 1e6, output_tolerance, 1))
                {
                    toc *= (1.0 - eta);
                    return true;
                }
                else {
                    return false;
                }
            }
            return true;
        }
        return false;
    }
    
    printf("TICCD:\n");
    largestAlpha = 1;
    tstart = clock();
    if (Point_Triangle_CCD_TI(x[0], x[1], x[2], x[3], x[4], x[5], x[6], x[7], 0.1, 0.0, largestAlpha)) {
        printf("%le\n", largestAlpha);
    }
    else {
        printf("no collision\n");
    }
    printf("%.1lems\n", double(clock() - tstart) / CLOCKS_PER_SEC * 1000);
    

    The output is

    TICCD:
    PT CCD tiny!
    0.000000e+00
    1.9e+00ms
    

    However I implemented a simpler version of TICCD according to the paper as

    template <class T>
    void Point_Triangle_Distance_Vector_Unclassified(
        const Eigen::Matrix<T, 3, 1>& p, 
        const Eigen::Matrix<T, 3, 1>& t0, 
        const Eigen::Matrix<T, 3, 1>& t1,
        const Eigen::Matrix<T, 3, 1>& t2,
        const Eigen::Matrix<T, 3, 1>& dp, 
        const Eigen::Matrix<T, 3, 1>& dt0, 
        const Eigen::Matrix<T, 3, 1>& dt1,
        const Eigen::Matrix<T, 3, 1>& dt2,
        T t, T lambda, T beta,
        Eigen::Matrix<T, 3, 1>& distVec)
    {
        const Eigen::Matrix<T, 3, 1> tp = (1 - lambda - beta) * t0 + lambda * t1 + beta * t2;
        const Eigen::Matrix<T, 3, 1> dtp = (1 - lambda - beta) * dt0 + lambda * dt1 + beta * dt2;
        distVec = p + t * dp - (tp + t * dtp);
    }
    
    template <class T>
    bool Point_Triangle_CheckInterval_Unclassified(
        const Eigen::Matrix<T, 3, 1>& p, 
        const Eigen::Matrix<T, 3, 1>& t0, 
        const Eigen::Matrix<T, 3, 1>& t1,
        const Eigen::Matrix<T, 3, 1>& t2,
        const Eigen::Matrix<T, 3, 1>& dp, 
        const Eigen::Matrix<T, 3, 1>& dt0, 
        const Eigen::Matrix<T, 3, 1>& dt1,
        const Eigen::Matrix<T, 3, 1>& dt2,
        const std::array<T, 6>& interval,
        T gap)
    {
        Eigen::Matrix<T, 3, 1> distVecMax, distVecMin;
        distVecMax.setConstant(-2 * gap - 1);
        distVecMin.setConstant(2 * gap + 1);
        for (int t = 0; t < 2; ++t) {
            for (int lambda = 0; lambda < 2; ++lambda) {
                for (int beta = 0; beta < 2; ++beta) {
                    if (lambda == 1 && beta == 1) {
                        continue;
                    }
                    Eigen::Matrix<T, 3, 1> distVec;
                    Point_Triangle_Distance_Vector_Unclassified(p, t0, t1, t2, dp, dt0, dt1, dt2, 
                        interval[t], interval[2 + lambda], interval[4 + beta], distVec);
                    distVecMax = distVecMax.array().max(distVec.array());
                    distVecMin = distVecMin.array().min(distVec.array());
                }
            }
        }
        return (distVecMax.array() >= -gap).all() && (distVecMin.array() <= gap).all();
    }
    template <class T>
    bool Point_Triangle_TICCD(
        const Eigen::Matrix<T, 3, 1>& p, 
        const Eigen::Matrix<T, 3, 1>& t0, 
        const Eigen::Matrix<T, 3, 1>& t1,
        const Eigen::Matrix<T, 3, 1>& t2,
        Eigen::Matrix<T, 3, 1> dp, 
        Eigen::Matrix<T, 3, 1> dt0, 
        Eigen::Matrix<T, 3, 1> dt1,
        Eigen::Matrix<T, 3, 1> dt2,
        T eta, T thickness, T& toc)
    {
        T dist2_cur;
        Point_Triangle_Distance_Unclassified(p, t0, t1, t2, dist2_cur);
        T dist_cur = std::sqrt(dist2_cur);
        T gap = eta * (dist2_cur - thickness * thickness) / (dist_cur + thickness);
    
        T tTol = 1e-3;
    
        std::vector<std::array<T, 6>> roots;
        std::deque<std::array<T, 6>> intervals;
        intervals.push_back({0, toc, 0, 1, 0, 1});
        int iterAmt = 0;
        while (!intervals.empty()) {
            ++iterAmt;
    
            std::array<T, 6> curIV = intervals.front();
            intervals.pop_front();
    
            // check
            if (Point_Triangle_CheckInterval_Unclassified(p, t0, t1, t2, dp, dt0, dt1, dt2, curIV, gap)) {
                if (curIV[0] && curIV[1] - curIV[0] < tTol) {
                    // root found within tTol
                    roots.emplace_back(curIV);
                }
                else {
                    // split interval and push back
                    std::vector<T> intervalLen({curIV[1] - curIV[0], curIV[3] - curIV[2], curIV[5] - curIV[4]});
                    switch (std::max_element(intervalLen.begin(), intervalLen.end()) - intervalLen.begin()) {
                    case 0:
                        intervals.push_back({curIV[0], (curIV[1] + curIV[0]) / 2, curIV[2], curIV[3], curIV[4], curIV[5]});
                        intervals.push_back({(curIV[1] + curIV[0]) / 2, curIV[1], curIV[2], curIV[3], curIV[4], curIV[5]});
                        break;
    
                    case 1:
                        intervals.push_back({curIV[0], curIV[1], curIV[2], (curIV[2] + curIV[3]) / 2, curIV[4], curIV[5]});
                        intervals.push_back({curIV[0], curIV[1], (curIV[2] + curIV[3]) / 2, curIV[3], curIV[4], curIV[5]});
                        break;
    
                    case 2:
                        intervals.push_back({curIV[0], curIV[1], curIV[2], curIV[3], curIV[4], (curIV[4] + curIV[5]) / 2});
                        intervals.push_back({curIV[0], curIV[1], curIV[2], curIV[3], (curIV[4] + curIV[5]) / 2, curIV[5]});
                        break;
                    }
                }
            }
        }
        
        if (roots.empty()) {
            printf("TICCD PT converged with %d iters\n", iterAmt);
            return false;
        }
        else {
            for (const auto& rI : roots) {
                if (toc > rI[0]) {
                    toc = rI[0];
                }
            }
            printf("TICCD PT converged with %d iters\n", iterAmt);
            return true;
        }
    }
    

    and it kinds of worked on this case and output

    TICCD PT converged with 6143 iters
    4.882812e-04
    5.3e-01ms
    

    which with tighter convergence tolerance might be able to reach the ground truth solution -- no collision.

    In my implementation, I didn't include the epsilons in formula (5) in the paper. Is it the main cause here?

    opened by liminchen 2
  • Refactored and cleaned up code

    Refactored and cleaned up code

    I tested and timed it on the entire dataset. I get 0 FN, a couple of fewer FP on the handcrafted data, and the timing is a little faster on the simulation and faster on handcrafted.

    opened by zfergus 0
Releases(v1.0.2)
Owner
Continuous Collision Detection
Code for continuous collision detection methods bechmarked in "A Large Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision Detection"
Continuous Collision Detection
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
Introduction to Statistics and Basics of Mathematics for Data Science - The Hacker's Way

HackerMath for Machine Learning “Study hard what interests you the most in the most undisciplined, irreverent and original manner possible.” ― Richard

Amit Kapoor 1.4k Dec 22, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
The end-to-end platform for building voice products at scale

Picovoice Made in Vancouver, Canada by Picovoice Picovoice is the end-to-end platform for building voice products on your terms. Unlike Alexa and Goog

Picovoice 318 Jan 07, 2023
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Video Contrastive Learning with Global Context

Video Contrastive Learning with Global Context (VCLR) This is the official PyTorch implementation of our VCLR paper. Install dependencies environments

143 Dec 26, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
GANSketchingJittor - Implementation of Sketch Your Own GAN in Jittor

GANSketching in Jittor Implementation of (Sketch Your Own GAN) in Jittor(计图). Or

Bernard Tan 10 Jul 02, 2022
This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

SBEVNet: End-to-End Deep Stereo Layout Estimation This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by D

Divam Gupta 19 Dec 17, 2022
Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Scala, Go, Javascript and more

Apache MXNet (incubating) for Deep Learning Master Docs License Apache MXNet (incubating) is a deep learning framework designed for both efficiency an

ROCm Software Platform 29 Nov 16, 2022
The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

The NEOSSat is a dual-mission microsatellite designed to detect potentially hazardous Earth-orbit-crossing asteroids and track objects that reside in deep space

John Salib 2 Jan 30, 2022
Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch

Omninet - Pytorch Implementation of OmniNet, Omnidirectional Representations from Transformers, in Pytorch. The authors propose that we should be atte

Phil Wang 48 Nov 21, 2022
Learning Super-Features for Image Retrieval

Learning Super-Features for Image Retrieval This repository contains the code for running our FIRe model presented in our ICLR'22 paper: @inproceeding

NAVER 101 Dec 28, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
CLIP (Contrastive Language–Image Pre-training) trained on Indonesian data

CLIP-Indonesian CLIP (Radford et al., 2021) is a multimodal model that can connect images and text by training a vision encoder and a text encoder joi

Galuh 17 Mar 10, 2022